精英家教网 > 高中数学 > 题目详情
(2013•河池模拟)直线y=kx+3与(x-2)2+(y-3)2=4相交于A、B两点,若|AB|=2
3
,则k
的值是(  )
分析:由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线y=kx+1的距离d,再由弦AB的长及圆的半径,利用垂径定理及勾股定理列出关于k的方程,求出方程的解即可得到k的值.
解答:解:由圆(x-2)2+(y-3)2=4,得到圆心(2,3),半径r=2,
∵圆心到直线y=kx+3的距离d=
|2k|
1+k2
,|AB|=2
3

∴|AB|=2
r2-d2
,即|AB|2=4(r2-d2),
∴12=4(4-
4k2
1+k2
),解得:k=±
3
3

故选B.
点评:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,以及勾股定理,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•河池模拟)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+
(1)证明:数列{an+1-an }是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)在如图所示的四棱锥P-ABCD中,已知 PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.
(Ⅰ)求证:MC∥平面PAD;
(Ⅱ)求证:平面PAC⊥平面PBC;
(Ⅲ)求直线MC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知函数f(x)满足下面关系:(1)f(x+
π
2
)=f(x-
π
2
)
(2)当x∈(0,π]时 f(x)=-cosx
给出下列四个命题:
①函数f(x)为周期函数      
②函数f(x)为奇函数
③函数f(x)的图象关于y轴对称  
④方程f(x)=lg|x|的解的个数是8
其中正确命题的序号是:
①④
①④
(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)函数f(x)=Asin(ωx+
π
6
)(ω>0)
的图象与x轴的交点的横坐标构成一个公差为
π
2
的等差数列,要得到函数g(x)=Asinωx的国像,只需将f(x)的图象向右平移
π
12
π
12
个单位.

查看答案和解析>>

同步练习册答案