精英家教网 > 高中数学 > 题目详情
9.若z(1+i)=i-2(i为虚数单位),则$\overline{z}$等于(  )
A.-$\frac{1}{2}$+$\frac{3}{2}$iB.-$\frac{1}{2}$-$\frac{3}{2}$iC.-1+3iD.-1-3i

分析 由z(1+i)=i-2,得$z=\frac{i-2}{1+i}$,然后利用复数代数形式的乘除运算化简复数z得答案.

解答 解:由z(1+i)=i-2,
得$z=\frac{i-2}{1+i}$=$\frac{(i-2)(1-i)}{(1+i)(1-i)}=\frac{-1+3i}{2}=-\frac{1}{2}+\frac{3}{2}i$,
则$\overline{z}$=$-\frac{1}{2}-\frac{3}{2}i$.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了共轭复数的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|3-3x>0},则下列正确的是(  )
A.3∈AB.1∈AC.0∉AD.-1∈A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是一个几何体的三视图,则这个几何体是(  )
A.棱锥B.棱柱C.棱台D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若双曲线$\frac{x^2}{|m|}-\frac{y^2}{|m|+3}=1$的焦距为$2\sqrt{5}$,则该双曲线经过一、三象限的渐近线方程为2x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设圆x2+y2+2$\sqrt{3}$x-13=0的圆心为A,直线l过点B($\sqrt{3}$,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)过点M(1,$\frac{\sqrt{3}}{2}$)做直线MA,MB分别与椭圆相交与A,B两点,满足直线MA与MB的倾斜角互补,判断直线AB的斜率是否为定值,若为定值求出此定值,若不为定值说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$\frac{cos(π-2α)}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin2α=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x2-ax-a)ex
(1)当a=1时,求f(x)的单调区间;
(2)若a∈(0,2),对于任意x1,x2∈[-4,0],都有|f(x1)-f(x2)|<(6e-2+2)•m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若以双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{4}$=1(a>0)的左、右焦点和点(2,1)为顶点的三角形为直角三角形,则此双曲线的实轴长为(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,直线l是曲线y=f(x)在点(4,f(4))处的切线,则f(4)+f'(4)的值等于$\frac{11}{2}$.

查看答案和解析>>

同步练习册答案