精英家教网 > 高中数学 > 题目详情
已知p:方程
x2
k-4
+
y2
k-6
=1
表示双曲线,q:过点M(2,1)的直线与椭圆
x2
5
+
y2
k
=1
恒有公共点,若p∧q为真命题,求k的取值范围.
p:方程
x2
k-4
+
y2
k-6
=1
表示双曲线,则(k-4)(k-6)<0,∴4<k<6,(2分)
q:过点M(2,1)的直线与椭圆
x2
5
+
y2
k
=1
恒有公共点,则
4
5
+
1
k
≤1
k≠5
,∴k>5.(4分)
又p∧q为真命题,则5<k<6,
所以k的取值范围是(5,6).(6分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,设点F坐标为(1,0),点P在y轴上运动,点M在x轴运动上,其中
PM
PF
=0,若动点N满足条件
PN
=
MP

(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F(1,0)的直线l和l′分别与曲线E交于A、B两点和C、D两点,若l⊥l′,试求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+y2-2x+4y-4=0,
(Ⅰ)若过定点(-2,0)的直线l与圆C相切,求直线l的方程;
(Ⅱ)若过定点(-1,0)且倾斜角为
π
6
的直线l与圆C相交于A,B两点,求线段AB的中点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=2x与抛物线C:y=
1
4
x2
交于A(xA,yA)、O(0,0)两点,过点O与直线l垂直的直线交抛物线C于点B(xB,yB).如图所示.
(1)求抛物线C的焦点坐标;
(2)求经过A、B两点的直线与y轴交点M的坐标;
(3)过抛物线y=
1
4
x2
的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A、B的直线AB是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

线段PQ是椭圆
x2
4
+
y2
3
=1
过M(1,0)的一动弦,且直线PQ与直线x=4交于点S,则
|SM|
|SP|
+
|SM|
|SQ|
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B是椭圆
x2
4
+
y2
3
=1
的左、右顶点,椭圆上异于A、B的两点C、D和x轴上一点P,满足
AP
=
1
3
AD
+
2
3
AC

(1)设△ADP、△ACP、△BCP、△BDP的面积分别为S1、S2、S3、S4,求证:S1S3=S2S4
(2)设P点的横坐标为x0,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与双曲线x2-4y2=4交于A、B两点,若线段AB的中点坐标为(8,1),则直线的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点F且垂直于x轴的直线交椭圆于点(-1,
2
2
)

(1)求椭圆C的方程;
(2)椭圆C的左、右顶点A、B,左、右焦点分别为F1,F2,P为以F1F2为直径的圆上异于F1,F2的动点,问
AP
BP
是否为定值,若是求出定值,不是说明理由?
(3)是否存在过点Q(-2,0)的直线l与椭圆C交于两点M、N,使得|FD|=
1
2
|MN|
(其中D为弦MN的中点)?若存在,求出直线l的方程:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案