精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-2x+4y-4=0,
(Ⅰ)若过定点(-2,0)的直线l与圆C相切,求直线l的方程;
(Ⅱ)若过定点(-1,0)且倾斜角为
π
6
的直线l与圆C相交于A,B两点,求线段AB的中点P的坐标.
(I)圆C:(x-1)2+(y+2)2=9.得到圆心C(1,-2),半径r=3.
当直线l的斜率不存在时,直线x=-2与⊙C相切,因此直线x=-2是圆的一条切线;
当直线l的斜率存在时,设切线方程为y=k(x+2),则圆心C到切线l的距离d=r.
|k+2+2k
1+k2
=3,解得k=
5
12

∴切线l的方程为y=
5
12
(x+2),即5x-12y+10=0.
综上可知:切线l的方程为x=-2或5x-12y+10=0.
(II)设A(x1,y1),B(x2,y2).
过定点(-1,0)且倾斜角为
π
6
的直线l方程为y=
3
3
(x+1).
代入圆方程可化为4x2+(4
3
-4)x+4
3
-11=0,
∴x1+x2=1-
3

∴xP=
x1+x2
2
=
1-
3
2
,yP=
3
3
1-
3
2
+1)=
3
-1
2

∴P(
1-
3
2
3
-1
2
).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C上的动点P到点(1,0)的距离与到定直线L:x=-1的距离相等,
(1)求曲线C的方程;
(2)直线m过(-2,1),斜率为k,k为何值时,直线m与曲线C只有一个公共点,有两个公共点;没有公共点?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(1,0),定直线l:x=-1,B为l上的一个动点,过B作直线m⊥l,连接AB,作线段AB的垂直平分线n,交直线m于点M.
(1)求点M的轨迹C的方程;
(2)过点N(4,0)作直线h与点M的轨迹C相交于不同的两点P,Q,求证OP⊥OQ(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线mx+ny=4和⊙O:x2+y2=4相交,则点P(m,n)与椭圆C:
x2
4
+
y2
3
=1的位置关系为(  )
A.点P在椭圆C内B.点P在椭圆C上
C.点P在椭圆C外D.以上三种均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点.
(Ⅰ)若椭圆上的点A(1,
3
2
)到点F1、F2的距离之和等于4,求椭圆C的方程;
(Ⅱ)设点P是(Ⅰ)中所得椭圆C上的动点,求线段F1P的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段AB的端点B的坐标是(1,2),端点A在圆(x+1)2+y2=4上运动,点M是AB的中点.
(1)若点M的轨迹为曲线C,求此曲线的方程;
(2)设直线l:x+y+3=0,求曲线C上的点到直线l距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
(a>b>0)的离心率e=
6
3
,短轴长为2.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程
x2
k-4
+
y2
k-6
=1
表示双曲线,q:过点M(2,1)的直线与椭圆
x2
5
+
y2
k
=1
恒有公共点,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+
2
=0
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.

查看答案和解析>>

同步练习册答案