精英家教网 > 高中数学 > 题目详情

一个口袋中装有大小相同的2个白球和3个黑球.
(I)若采取放回抽样方式,每次摸出一球,从中摸出两球,求两球恰好颜色不同的概率;
(II)若采取放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与均值.

解:(Ⅰ)取放回抽样方式,从中摸出两个球,两球恰好颜色不同,也就是说从5个球中摸出一球,若第一次摸到白球,则第二次摸到黑球;若第一次摸到黑球,则第二次摸到白球.
因此它的概率P是:…(5分)
(Ⅱ)设摸得白球的个数为ξ,则ξ=0,1,2.;…(7分)
ξ的分布列为:
ξ012
P
…(9分)
…(12分)
分析:(I)采取放回抽样方式,从中摸出两个球,两球恰好颜色不同,也就是说从5个球中摸出一球,若第一次摸到白球,则第二次摸到黑球;若第一次摸到黑球,则第二次摸到白球,由此可求概率;
(II)设摸得白球的个数为ξ,则ξ=0,1,2,求出相应的概率,可得ξ的分布列与期望.
点评:本题考查有放回抽样的概率和不放回抽样的分布列与期望,考查学生应用知识的能力,中等题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋中装有大小相同的2个白球和4个黑球,要从中摸出两个球.
(Ⅰ)采取放回抽取方式,求摸出两球颜色恰好不同的概率;
(Ⅱ)采取不放回抽取方式,记摸得白球的个数为ξ,试求ξ的分布列,并求它的期望和方差.(方差Dξ=
ni=1
pi(ξi-Eξ)2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河西区一模)一个口袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋中装有大小相同的2个白球和4个黑球.采取不放回抽样方式,从中摸出两个球,设摸得白球的个数为ξ,则Eξ=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋中装有大小相同的8个白球和7个黑球,从中任意摸出2个球,则摸出的2个球至少有一个是白球的概率是
86
105
86
105
(用数字作答)

查看答案和解析>>

同步练习册答案