精英家教网 > 高中数学 > 题目详情

【题目】给定椭圆C: + =1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为 ,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2 ,求实数m的值.

【答案】
(1)解:记椭圆C的半焦距为c.

由题意,得b=1, = ,c2=a2+b2

解得a=2,b=1.


(2)解:由(1)知,椭圆C的方程为 +y2=1,圆C1的方程为x2+y2=5.

显然直线l的斜率存在.

设直线l的方程为y=kx+m,即kx﹣y+m=0.

因为直线l与椭圆C有且只有一个公共点,

故方程组 (*)有且只有一组解.

由(*)得(1+4k2)x2+8kmx+4m2﹣4=0.

从而△=(8km)2﹣4(1+4k2)( 4m2﹣4)=0.

化简,得m2=1+4k2.①…(10分)

因为直线l被圆x2+y2=5所截得的弦长为2

所以圆心到直线l的距离d= =

= . ②

由①②,解得k2=2,m2=9.

因为m>0,所以m=3.


【解析】(1)记椭圆C的半焦距为c.由题意,得b=1, = ,由此能求出a,b.(2)由(1)知,椭圆C的方程为 +y2=1,圆C1的方程为x2+y2=5.设直线l的方程为y=kx+m,由 ,得(1+4k2)x2+8kmx+4m2﹣4=0.由此利用根的判别式、弦长公式、圆心到直线的距离,结合知识点能求出m.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;
(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|﹣a<x<a+1,a∈R},集合N={x|x2﹣2x﹣3≤0}.
(1)当a=1时,求M∪N及N∩RM;
(2)若x∈M是x∈N的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机抽取某次高三数学模拟考试甲、乙两班各10名同学的客观题成绩(满分60分),统计后获得成绩数据的茎叶图(以十位数字为茎,个位数字为叶),如图所示: (Ⅰ)分别计算两组数据的平均数,并比较哪个班级的客观题平均成绩更好;
(Ⅱ)从这两组数据各取两个数据,求其中至少有2个满分(60分)的概率;
(Ⅲ)规定客观题成绩不低于55分为“优秀客观卷”,以这20人的样本数据来估计此次高三数学模拟的总体数据,若从总体中任选4人,记X表示抽到“优秀客观卷”的学生人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,x∈[2,6].
(1)证明f(x)是减函数;
(2)若函数g(x)=f(x)+sinα的最大值为0,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中ω>0. (I)若对任意x∈R都有 ,求ω的最小值;
(II)若函数y=lgf(x)在区间 上单调递增,求ω的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为椭圆 + =1上一点,F1 , F2为左右焦点,若∠F1PF2=60°.
(1)求△F1PF2的面积;
(2)求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、
(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两名同学在某项测试中得分成绩的茎叶图如图所示,x1 , x2分别表示知甲、乙两名同学这项测试成绩的众数,s12 , s22分别表示知甲、乙两名同学这项测试成绩的方差,则有(

A.x1>x2 , s12<s22
B.x1=x2 , s12>s22
C.x1=x2 , s12=s22
D.x1=x2 , s12<s22

查看答案和解析>>

同步练习册答案