一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2 s.
(1)爆炸点应在什么样的曲线上?
(2)已知A、B两地相距800 m,并且此时声速为340 m/s,求曲线的方程.
解(1)由声速及A、B两处听到爆炸声的时间差,可知A、B两处与爆炸点的距离的差, 因此爆炸点应位于以A、B为焦点的双曲线上. 因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上. (2)如下图,建立直角坐标系xOy,使A、B两点在x轴上, 并且点O与线段AB的中点重合. 设爆炸点P的坐标为(x,y),则
即2a=680,a=340. 又 ∴2c=800,c=400, b2=c2-a2=44400. ∵ ∴x>0. 所求双曲线的方程为:
|
利用两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程,但不能确定爆炸点的准确位置.如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置。
|
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)爆炸点应在什么样的曲线上?
(2)已知A、B两地相距800 m,并且此时声速为340 m/s,求曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com