精英家教网 > 高中数学 > 题目详情

已知偶函数f(x)在区间[0,+∞)上单调递减,则满足数学公式的x的取值范围 是________.

(-∞,)∪(,+∞)
分析:由偶函数性质得f(2x-1)=f(|2x-1|),根据f(x)在[0,+∞)上的单调性把该不等式转化为具体不等式,解出即可.
解答:因为f(x)为偶函数,所以f(2x-1)=f(|2x-1|),
所以?f(|2x-1|)<f(),
又f(x)在[0,+∞)上单调递减,
所以|2x-1|>,解得x<,或x>
所以x的取值范围为
故答案为
点评:本题考查函数的奇偶性、单调性的综合,考查抽象不等式的求解,考查转化思想,解决本题的关键是利用函数的性质把抽象不等式具体化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,π]上单调递增,那么下列关系成立的是(  )
A、f(-π)>f(-2)>f(
π
2
)
B、f(-π)>f(-
π
2
)>f(-2)
C、f(-2)>f(-
π
2
)>f(-π)
D、f(-
π
2
)>f(-2)>f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:

3、已知偶函数f(x)在(0,+∞)上单调递增,则f(-3),f(-1),f(2)的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在R上的任一取值都有导数,且f′(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处的切线的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上满足f′(x)>0则不等式f(2x-1)<f(
1
3
)的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x-1)<f(x+3)的x的取值范围是
x>2或x<-
4
3
x>2或x<-
4
3

查看答案和解析>>

同步练习册答案