精英家教网 > 高中数学 > 题目详情

设集合A={x|数学公式≤0},B={x|x2-2x≤0}则(CRA)∩B=________.

[1,2]
分析:由A={x|≤0},解分式不等式,即可求出集合A,求出集合A的补集,B={x|x2-2x≤0}解一元二次不等式,即可求出集合B,然后求它们的交集,
解答:A={x|≤0}={x|-2≤x<1},
∴CRA={x|x≥1或x<-2}
B={x|x2-2x≤0}={x|0≤x≤2},
∴(CRA)∩B=[1,2].
故答案为:[1,2].
点评:此题是个基础题.考查集合的交集和补集运算,以及分式不等式和一元二次不等式的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|0≤x≤4},B={y|0≤y≤2},则下列对应f中不能构成A到B的映射的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0<x<2},B={x|x2≤1}.则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0<x-m<2},B={x|x≤0或x≥3}.分别求出满足下列条件的实数m的取值范围.
(Ⅰ)A∩B=∅;
(Ⅱ)A∪B=B.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0≤x≤3},B={x|x2-3x+2≤0,x∈Z},则A∩B等于(  )
A、(-1,3)B、[1,2]C、{0,1,2}D、{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0≤x≤4},B={y|0≤y≤2}则下列对应f中不能构成A到B的映射的是(  )

查看答案和解析>>

同步练习册答案