精英家教网 > 高中数学 > 题目详情
已知O是△ABC内任意一点,连接AO、BO、CO并延长交对边于A′、B′、C′,则
OA′
AA′
+
OB′
BB′
+
OC′
CC′
=1
,运用类比猜想,对于空间中四面体A-BCD有
OA′
AA′
+
OB′
BB′
+
OC′
CC′
+
OD′
DD′
=1
OA′
AA′
+
OB′
BB′
+
OC′
CC′
+
OD′
DD′
=1
分析:先根据所给的定理写出猜想的定理,把面积类比成体积,把面积之和等于1,写成体积之和等于1,再进行证明.
解答:解:猜想:若O四面体ABCD内任意点,AO,BO,CO,DO并延长交对面于A′,B′,C′,D′,则
OA′
AA′
+
OB′
BB′
+
OC′
CC′
+
OD′
DD′
=1

用“体积法”证明如下:
OA′
AA′
+
OB′
BB′
+
OC′
CC′
+
OD′
DD′

=
VO-BCD
VA-BCD
+
VO-CAD
VA-BCD
+
VO-ABD
VC-ABD
+
VO-ABC
VD-ABC
=
VABCD
VABCD
=1
故答案为:
OA′
AA′
+
OB′
BB′
+
OC′
CC′
+
OD′
DD′
=1
点评:本题考查类比推理,是一个基础题,这种题目的解题的关键是要根据所给的定理类比出可能的定理,后面再进行证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线的三点,o为平面ABC内任一点,动点P满足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R
且λ≠1,则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线的三点,O为平面ABC内任一点,动点P满足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R且λ≠0),则点P的轨迹一定通过△ABC的
重心
重心

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A,B,C是平面上不共线的三点,O为平面ABC内任一点,动点P满足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R且λ≠0),则点P的轨迹一定通过△ABC的______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省天门市部分重点中学联考高三(上)期中数学试卷(解析版) 题型:填空题

已知A,B,C是平面上不共线的三点,O为平面ABC内任一点,动点P满足等式=[(1-λ)+(1-λ)+(1+2λ)](λ∈R且λ≠0),则点P的轨迹一定通过△ABC的   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省长沙市浏阳一中高三(下)第三次月考数学试卷(理科)(解析版) 题型:选择题

已知A,B,C是平面上不共线的三点,o为平面ABC内任一点,动点P满足等式且λ≠1,则P的轨迹一定通过△ABC的( )
A.内心
B.垂心
C.重心
D.外心

查看答案和解析>>

同步练习册答案