精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.
(I)由
y=x+b
y2=4x
得x2+(2b-4)x+b2=0
直线y=x+b是抛物线C2:y2=4x的一条切线.
所以△=0⇒b=1e=
c
a
=
2
2
⇒a=
2

所以椭圆C1
x2
2
+y2=1
(5分)
(Ⅱ)当直线l与x轴平行时,以AB为直径的圆方程为x2+(y+
1
3
)2=(
4
3
)2

当直线l与y轴重合时,以AB为直径的圆方程为x2+y2=1
所以两圆的切点为点(0,1)(8分)
所求的点T为点(0,1),证明如下.
当直线l与x轴垂直时,以AB为直径的圆过点(0,1)
当直线l与x轴不垂直时,可设直线l为:y=kx-
1
3

y=kx-
1
3
x2
2
+y2=1
得(18k2+9)x2-12kx-16=0
设A(x1,y1),B(x2,y2)则
x1+x2=
12k
18k2+9
x1x2=
-16
18k2+9
TA
TB
=x1x2-
4
3
(x1+x2)+
16
9
=(1+k2)
-16
18k2+9
-
4
3
×
12k
18k2+9
+
16
9
=0

所以
TA
TB
,即以AB为直径的圆过点(0,1)
所以存在一个定点T,使得以AB为直径的圆恒过定点T(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知的三边长成等差数列,若点的坐标分别为.(1)求顶点的轨迹的方程;(2)若线段的延长线交轨迹于点,当时求线段的垂直平分线轴交点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,有一正方形钢板ABCD缺损一角(图中的阴影部分),边缘线OC是以直线AD为对称轴,以线段AD的中点O为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF,可使剩余的直角梯形的面积最大?并求其最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左、右焦点分别是F1、F2,离心率为
3
2
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1;
(Ⅰ)求椭圆C的方程.
(Ⅱ)若A,B,C是椭圆上的三个点,O是坐标原点,当点B是椭圆C的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(Ⅲ)设点p是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交椭圆C的长轴于点M(m,0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点A(2,1).
(1)求椭圆C的标准方程;
(2)若直线l:x-1-y=0与椭圆C交于不同的两点M,N,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知B(-1,1)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上一点,且点B到椭圆的两个焦点距离之和为4;
(1)求椭圆方程;
(2)设A为椭圆的左顶点,直线AB交y轴于点C,过C作斜率为k的直线l交椭圆于D,E两点,若
S△CBD
S△CAE
=
1
6
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆左焦点F,倾斜角为
π
3
的直线交椭圆于A,B两点,若|FA|=2|FB|,则椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的曲线C是由部分抛物线C1:y=x2-1(|x|≥1)和曲线C2x2+
y2
m
=1
(y≤0,m>0)“合成”的,直线l与曲线C1相切于点M,与曲线C2相切于点N,记点M的横坐标为t(t>1),其中A(-1,0),B(1,0).
(1)当t=
2
时,求m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求出此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左、右焦点坐标分别是(-
2
,0)
(
2
,0)
,离心率是
6
3
,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值.

查看答案和解析>>

同步练习册答案