精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知的三边长成等差数列,若点的坐标分别为.(1)求顶点的轨迹的方程;(2)若线段的延长线交轨迹于点,当时求线段的垂直平分线轴交点的横坐标的取值范围.

(1) (2)
:解:(Ⅰ)因为成等差数列,点的坐标分别为所以由椭圆的定义可知点的轨迹是以为焦点长轴为4的椭圆(去掉长轴的端点),所以.故顶点的轨迹方程为
(Ⅱ)由题意可知直线的斜率存在,设直线方程为

两点坐标分别为,则
,所以线段CD中点E的坐标为,故CD垂直平分线l的方程为,令y=0,得轴交点的横坐标为,由,解得
又因为,所以.当时,有
,此时函数递减,所以.所以,
故直线轴交点的横坐标的范围是.…12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,为两等腰直角三角形,C(a,0)(a>0).设的外接圆圆心分别为,

(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程;
(Ⅲ)是否存在这样的⊙N,使得⊙N上有且只有三个点到直线AB的距离为,若存在,求此时⊙N的标准方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点()在曲线上变化,则的最大值为(   )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知F1、F2是椭圆c1(a>b>0)的左、右焦点,A为右顶点,P为椭圆c1上任意一点,且最大值的取值范围是[c2,3c2],c2=a2-b2.(1)求椭圆c1离心率e的取值范围;(2)设双曲线c2以椭圆c1焦点为顶点,顶点为焦点,B是双曲线c2在第一象限上任意一点,当椭圆c1离心率e取得最小值时,问是否存在正常数λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的离心率为,且曲线过点
(1)求椭圆C的方程;(2)已知直线与椭圆C交于不同的两点A,B,且线段AB的中点不在圆内,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的中心在原点,离心率为,若它的一条准线与抛物线的准线重合,则该双曲线的方程是(     )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=2px(p>0)的焦点为F,直线L:2px+3y=p2
⑴当p为何值时,焦点F到直线L的距离最大;
⑵在第⑴题下,又若抛物线与直线L相交于A、B两点。求△ABF的面积。

查看答案和解析>>

同步练习册答案