精英家教网 > 高中数学 > 题目详情
(2012•吉林二模)已知抛物线C:y=
1
4
x2
,则过抛物线焦点F且斜率为
1
2
的直线l被抛物线截得的线段长为(  )
分析:先根据抛物线方程求得抛物线的焦点坐标,进而求得直线的方程与抛物线方程联立,消去y,根据韦达定理求得x1+x2的值,进而根据抛物线的定义可求弦长.
解答:解:抛物线C:y=
1
4
x2
的焦点坐标为(0,1),
∴过抛物线焦点F且斜率为
1
2
的直线l的方程为y=
1
2
x+1,代入抛物线C:y=
1
4
x2

得x2-2x-4=0,
设两个交点坐标为A(x1,y1),B(x2,y2
∴x1+x2=2,∴y1+y2=3
根据抛物线的定义可知|AB|=y1+
p
2
+y2+
p
2
=y1+y2+p=3+2=5
故选C.
点评:本题主要考查了直线与圆锥曲线的关系,抛物线的简单性质,关键是:将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式求得|AB|值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设集合A={x|0≤x<1},B={x|1≤x≤2},函数f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,则x0的取值范围是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)△ABC内角A,B,C的对边分别是a,b,c,若c=2
3
b
sin2A-sin2B=
3
sinBsinC
,则A=
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)执行程序框图,若输出的结果是
15
16
,则输入的a为(  )

查看答案和解析>>

同步练习册答案