精英家教网 > 高中数学 > 题目详情
如图,已知几何体的下部是一个底面是边长为2的正六边形、侧面全为正方形的棱柱,上部是一个侧面全为等腰三角形的棱锥,其侧棱长都为
(1)证明:DF1⊥平面PA1F1
(2)求异面直线DF1与B1C1所成角的余弦值.

【答案】分析:(1)由题意可得:AF⊥FF1并且AF⊥DF,再根据线面垂直的判定定理可得:AF⊥平面DFF1.即可得到A1F1⊥DF1,再根据线段的长度关系形成直角三角形进而得到:DF1⊥PF1;再结合线面垂直的判定定理得到线面垂直.
(2)根据几何体的结构特征建立空间直角坐标系,分别求出两条直线所在的向量,再结合向量之间的有关运算得到向量的夹角,进而转化为两条异面直线的夹角.
解答:解:(1)∵侧面全为矩形,∴AF⊥FF1
在正六边形ABCDEF中,AF⊥DF,…(1分)
又DF∩FF1=F,∴AF⊥平面DFF1;        …(2分)
∵AF∥A1F1,∴A1F1⊥平面DFF1
又DF1?平面DFF1,∴A1F1⊥DF1;…(5分)
在△DFF1中,FF1=2,,∴DF1=4,

∴在平面PA1ADD1中,如图所示,
∴DF12+PF12=PD2,故DF1⊥PF1;                        …(7分)
又A1F1∩PF1=F1,∴DF1⊥平面PA1F1.             …(8分)
(2)以底面正六边形ABCDEF的中心为坐标原点O,以OD为y轴,建立如图所示的空间直角坐标系.
所以D(0,2,0),
,…(11分)
设异面直线DF1与B1C1所成角为θ,则
…(13分)
异面直线DF1与B1C1
所成角的余弦值为.                                  …(14分)
点评:解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,结合有关定理进行证明即可,并且也有利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离等问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知几何体E-ABCD如图所示,其中四边形ABCD为矩形,△ABE为等边三角形,且AD=
3
AE=2,DE=
7
,点F为棱BE上的动点.
(I)若DE∥平面AFC,试确定点F的位置;
(II)在(I)条件下,求几何体D-FAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区一模)如图,已知在空间四边形ABCD中,AB=AC=DB=DC,E为BC的中点.
(Ⅰ)求证:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求几何体ABCD的体积;
(Ⅲ)在(Ⅱ)的条件下,若G为△ABD的重心,试问在线段BC上是否存在点F,使GF∥平面ADE?若存在,请指出点F在BC上的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在空间四边形ABCD中,AB=AC=DB=DC,E为BC的中点.
(Ⅰ)求证:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求几何体ABCD的体积;
(Ⅲ)在(Ⅱ)的条件下,若G为△ABD的重心,试问在线段BC上是否存在点F,使GF∥平面ADE?若存在,请指出点F在BC上的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知几何体ABC-DEF中,△ABC及△DEF都是边长为2的等边三角形,四边形ABEF为矩形,且CD=AF+2,CD//AF,O为AB中点.

(1)求证:AB⊥平面DCO

(2)若M为CD中点,AF=x,则当x取何值时,使AM与平面ABEF所成角为45°?

试求相应的x值的.

(3)求该几何体在(2)的条件下的体积.

查看答案和解析>>

科目:高中数学 来源:2012年北京市顺义区高考数学一模试卷(文科)(解析版) 题型:解答题

如图,已知在空间四边形ABCD中,AB=AC=DB=DC,E为BC的中点.
(Ⅰ)求证:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求几何体ABCD的体积;
(Ⅲ)在(Ⅱ)的条件下,若G为△ABD的重心,试问在线段BC上是否存在点F,使GF∥平面ADE?若存在,请指出点F在BC上的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案