精英家教网 > 高中数学 > 题目详情

已知函数f(x)=loga(3+x),g(x)=loga(3-x)(a>0且a≠1).

(1)当a=2时,求函数yf(x)+g(x)的定义域、值域;

(2)求使f(x)-g(x)>0成立的x取值范围.


 [解] (1)当a=2时,有y=log2(3+x)+log2(3-x)=log2(-x2+9),则由3+x>0且3-x>0,解得-3<x<3,故函数y的定义域为(-3,3);又因为0<-x2+9≤9且函数y=log2t(令t=-x2+9)为增函数,所以log2(-x2+9)≤log29=2log23即y≤2log23,故函数y的值域为(-∞,2log23].

(2)由f(x)-g(x)>0,得f(x)>g(x),即loga(3+x)>loga(3-x),

a>1时,满足解得0<x<3;

当0<a<1时,满足解得-3<x<0

故所求x取值范围为:当a>1时,解集为{x|0<x<3},当0<a<1时,解集为{x|-3<x<0}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知=3,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:


计算(3)+log2(log216)+(5)2

查看答案和解析>>

科目:高中数学 来源: 题型:


log32________1;

查看答案和解析>>

科目:高中数学 来源: 题型:


若函数y=loga(x2ax+2)在区间(-∞,1]上为减函数,则a的取值范围为(  )

A.(0,1)                                B.[1,+∞)

C.[2,3)                                D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知2loga(x-4)>loga(x-2),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知a>0且a≠1,函数y=loga(2x-3)+的图象恒过定点P,若P在幂函数f(x)的图象上,则f(8)=________.

查看答案和解析>>

同步练习册答案