精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,圆C:x2+y2=4分别交x轴正半轴及y轴负半轴于M,N两点,点P为圆C上任意一点,则数学公式的最大值为________.


分析:利用向量的数量积及三角函数的单调性即可求出.
解答:令x=0,得y2=4,解得y=±2,取N(0,-2).
令y=0,得x2=4,解得x=±2,取M(2,0).
设点P(2cosθ,2sinθ)(θ∈[0,2π)).
=(2-2cosθ,-2sinθ)•((-2cosθ,-2-2sinθ)
=-2cosθ(2-2cosθ)+2sinθ(2+2sinθ)
=4sinθ-4cosθ+4
=φ)+4≤,当且仅当sin(θ-φ)=1时取等号.
的最大值为
故答案为
点评:熟练掌握向量的数量积及三角函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy中,圆C经过函数f(x)=
13
x3+x2-3x-9(x∈R)的图象与两坐标轴的交点,C为圆心.
(1)求圆C的方程;
(2)在直线l:2x+y+19=0上有一个动点P,过点P作圆C的两条切线,设切点分别为M,N,
求四边形PMCN面积的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy中,圆C的参数方程为
x=
3
+3cosθ
y=1+3sinθ
(θ为参数),以ox为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
6
)
=0则圆C截直线l所得的弦长为
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C:x2+y2=4分别交x轴正半轴及y轴负半轴于M,N两点,点P为圆C上任意一点,则
PM
PN
的最大值为
4+4
2
4+4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C的方程为x2+y2=4,若直线kx-4y+16=0上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则K的取值范围
(-∞,-
4
7
3
]∪[
4
7
3
,+∞)
(-∞,-
4
7
3
]∪[
4
7
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)在平面直角坐标系xoy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则实数k的最大值为(  )

查看答案和解析>>

同步练习册答案