【题目】某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个实心圆柱体和一个实心半球体组成,要求半球的半径和圆柱的底面半径之比为
,工艺品的体积为
。现设圆柱的底面半径为
,工艺品的表面积为
,半球与圆柱的接触面积忽略不计。
![]()
(1)试写出
关于
的函数关系式并求出
的取值范围;
(2)怎样设计才能使工艺品的表面积最小?并求出最小值。
参考公式:球体积公式:
;球表面积公式:
,其中
为球半径.
【答案】(1)
;(2)按照圆柱的高为
,圆柱的底面半径为
,半球的半径为
设计,工艺品的表面积最小,为
.
【解析】
(1)由题知设圆柱的底面半径为2x,半球的半径为3x.设圆柱的高为h.通过工艺品的体积,求出圆柱的高与底面半径的关系,然后写出S关于x的函数关系式;
(2)利用(1)的表达式,通过导数,求出极值点,说明高、底面半径、球的半径的数值使工艺品的表面积最小.
(1)由题知设圆柱的底面半径为
,半球的半径为
,设圆柱的高为
。
∵工艺品的体积为
,∴
,∴
,
∴工艺品的表面积为![]()
。
∵
,且
,∴
,
∴
。
(2)由(1)知,
,
令
,得
,列表:
|
| 1 |
|
|
| 0 | + |
| ↘ |
| ↗ |
∴
在
递减,在
递增.
∴
,此时
,
答:按照圆柱的高为
,圆柱的底面半径为
,半球的半径为
设计,工艺品的表面积最小,为
.
科目:高中数学 来源: 题型:
【题目】已知:函数
,当x∈(-3,2)时,
>0,当x∈(-
,-3)
(2,+
)时,
<0
(I)求a,b的值;
(II)若不等式
的解集为R,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知整数n≥4,集合M={1,2,3,…,n}的所有含有4个元素的子集记为A1 , A2 , A3 , …,
.
设A1 , A2 , A3 , …,
中所有元素之和为Sn .
(1)求S4 , S5 , S6并求出Sn;
(2)证明:S4+S5+…+Sn=10Cn+26 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
是非零不共线的向量,设
=
+
,定义点集M={K|
=
},当K1 , K2∈M时,若对于任意的r≥2,不等式|
|≤c|
|恒成立,则实数c的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学巨著,内容极为丰富,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”意思是:“5人分取5钱,各人所得钱数依次成等差数列,其中前2人所得钱数之和与后3人所得钱数之和相等.”,则其中分得钱数最多的是( )
A.
钱
B.1钱
C.
钱
D.
钱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1:
+
=1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面是以O为中心的菱形,
底面ABCD,
,
,M为BC上一点.
当BM等于多少时,
平面POM?
在满足
的条件下,若
,求四棱锥
的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
后,得到如图的频率分布直方图.
![]()
(I)调查公司在抽样时用到的是哪种抽样方法?
(II)求这40辆小型汽车车速的众数和中位数的估计值;
(III)若从这40辆车速在
的小型汽车中任意抽取2辆,求抽出的2辆车车速都在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组欲研究昼夜温差大小与患感冒人数之间的关系,统计得到1至6月份每月9号的昼夜温差
与因患感冒而就诊的人数
的数据,如下表:
日期 | 1月9号 | 2月9号 | 3月9号 | 4月9号 | 5月9号 | 6月9号 |
| 10 | 11 | 13 | 12 | 8 | 6 |
| 22 | 25 | 29 | 26 | 16 | 12 |
该研究小组的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求回归方程,再用之前被选取的2组数据进行检验.
(1)若选取1月和6月的数据作为检验数据,请根据剩下的2至5月的数据,求出
关于
的线性回归方程;(计算结果保留最简分数)
(2)若用(1)中所求的回归方程作预报,得到的估计数据与所选出的检验数据的误差不超过2人,则认为得到的回归方程是理想的,试问该研究小组所得回归方程是否理想?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com