精英家教网 > 高中数学 > 题目详情

已知f(x)=
(1)讨论f(x)的单调性,并求出f(x)的最大值;
(2)求证:f(x)≤1-
(3)比较f(22)+f(32)+…+f(n2)与的大小,并证明你的结论。

解:(1),令

又f(x)的定义域为(0,+∞),
∴f(x)在上递增,在上递减,从而

(2)要证即证

所以只需证



舍去)
在(0,1)上递增,在(1,+)上递减

成立,即成立;
(3)由(2)知,从而





练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=2,任取a、b∈[-1,1],a+b≠0,都有
f(a)+f(b)
a+b
>0成立
(1)判断f(x)的单调性,并说明理由;     
(2)解不等式f(x)<f(
1
x+1
)

(3)若f(x)≤2m2-2am+3对所有的m∈[0,3]恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos2x+asin2x+b-1(a>0)的最大值比最小值大4.
(1)求a的值;
(2)当x∈[0,
π2
]
时,|f(x)|≤3恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•崇文区二模)已知f(x)=x2+2xf′(1),则f′(1)等于(  )

查看答案和解析>>

同步练习册答案