精英家教网 > 高中数学 > 题目详情
12.某校共有400名学生参加了一次数学竞赛,竞赛成绩都在[50,100]内,且频率分布直方图如图所示(成绩分组为[50,60],[60,70],[70,80),[80,90),[90,100]),则在本次竞赛中,得分不低于80分的人数为120.

分析 由频率分布直方图求出得分不低于80分的频率,由此能求出得分不低于80分的人数.

解答 解:由频率分布直方图得:
得分不低于80分的频率为:1-(0.015+0.025+0.030)×10=0.3,
∴得分不低于80分的人数为:400×0.3=120人.
故答案为:120.

点评 本题考查频率分布直方图的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知点A(1,2,-1),点B与点A关于平面xoy对称,则线段AB的长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线平行于直线l:x+2y+5=0,双曲线的一个焦点在直线l上,则双曲线的方程为(  )
A.$\frac{{3{x^2}}}{25}-\frac{{3{y^2}}}{100}=1$B.$\frac{{3{x^2}}}{100}-\frac{{3{y^2}}}{25}=1$
C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,若输入x为13,则输出y的值为(  )
A.10B.5C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面ABC等边三角形,E,F分别是BC,CC1的中点.求证:
(Ⅰ) EF∥平面A1BC1
(Ⅱ) 平面AEF⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.同时掷两粒骰子(六个面分别标有1,2,3,4,5,6个点的正方体),则向上的点数之和为3的倍数的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{lnx}{\sqrt{2-x}}$的定义域是(  )
A.(0,2)B.k>0C.(0,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:${({\frac{2}{3}})^0}+3×{({\frac{9}{4}})^{-\frac{1}{2}}}+(lg4+lg25)$的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是两两垂直的单位向量,且$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,则(6$\overrightarrow{a}$)•($\frac{1}{2}$$\overrightarrow{b}$)等于21.

查看答案和解析>>

同步练习册答案