精英家教网 > 高中数学 > 题目详情

【题目】在下列命题中,下列选项正确的是( )

A. 在回归直线中,变量时,变量的值一定是15.

B. 两个变量相关性越强,则相关系数就越接近于1.

C. 在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.

D. 是两个相等的非零实数,则是纯虚数.

【答案】D

【解析】

根据回归方程的定义判断根据相关系数的定义判断;根据残差图的性质判断;根据纯虚数的定义判断.

在回归直线中,变量时,得到15只是变量的一个预测值不正确

两个变量相关性越强,则相关系数的绝对值就越接近于1,不正确

在残差图中,残差点比较均匀落在水平的带状区域中,带状区域的宽度越小,拟合效果越好,故不正确

是两个相等的非零实数,则,符合纯虚数的定义正确,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是(
A.
B.
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上.

(Ⅰ)若圆Cy轴相切,求圆C的方程;

(Ⅱ)当a=0时,问在y轴上是否存在两点AB,使得对于圆C上的任意一点P,都有,若有,试求出点AB的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个)表示面包的需求量,(单位:元)表示利润.

(1)求关于的函数解析式;

(2)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知圆C:x2+y2﹣4x=0及点A(﹣1,0),B(1,2)

(1)若直线l平行于AB,与圆C相交于M,N两点,MN=AB,求直线l的方程;
(2)在圆C上是否存在点P,使得PA2+PB2=12?若存在,求点P的个数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若y=|3sin(ωx+ )+2|的图象向右平移 个单位后与自身重合,且y=tanωx的一个对称中心为( ,0),则ω的最小正值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率

(1)求椭圆的标准方程

(2)是否存在过点的直线交椭圆与不同的两点,且满足 (其中为坐标原点)。若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案