精英家教网 > 高中数学 > 题目详情
[2014·湖南六校联考]设x1,x2是方程ln|x-2|=m(m为实数)的两根,则x1+x2的值为(  )
A.4B.2C.-4 D.与m有关
A
方程ln|x-2|=m的根即函数y=ln|x-2|的图象与直线y=m的交点的横坐标,因为函数y=ln|x-2|的图象关于x=2对称,且在x=2两侧单调,值域为R,所以对任意的实数m,函数y=ln|x-2|的图象与直线y=m必有两交点,且两交点关于直线x=2对称,故x1+x2=4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设函数关于的方程的解的个数不可能是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2acos kπ·ln x(k∈N*,a∈R,且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2 04,关于x的方程f(x)=2ax有唯一解,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=,若关于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五个不同的实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=x3+x的零点依次为a,b,c则a,b,c由小到大的顺序是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(Ⅰ) 求a、b的值,并写出切线l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,且则函数的零点落在区间(   )
A.B.C.D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则函数的零点位于区间(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2+4x+a没有零点,则实数a的取值范围是(  )
A.a<4B.a>4C.a≤4 D.a≥4

查看答案和解析>>

同步练习册答案