精英家教网 > 高中数学 > 题目详情
16.求经过点(-3,4),且与直线3x+4y-2=0垂直的直线方程.

分析 由垂直关系可得直线的斜率,可得点斜式方程,化为一般式即可.

解答 解:∵直线3x+4y-2=0的斜率为-$\frac{3}{4}$,
∴与已知直线垂直的直线斜率为$\frac{4}{3}$,
∴所求直线的方程为y-4=$\frac{4}{3}$(x+3),
化为一般式可得4x-3y+24=0

点评 本题考查直线的一般式方程和垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,
(1)a4=27,q=-3,求a7
(2)a2=18,a4=8,求a1与q;
(3)a5=4,a7=6,求a9
(4)a5-a1=15,a4-a2=6,求a5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数y=ax+b的图象不经过第二象限,则实数a,b应满足的条件为a>1,b≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2+1,求f(f(-1)),f(f($\frac{1}{x}$)).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{1+{x}^{-1}}{1+x}$=3,则x=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域和值域:
(1)y=1-3x
(2)y=${3}^{\frac{1}{x-2}}$.
(3)y=$(\frac{1}{3})^{\sqrt{1-x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.利用回归分析的方法研究两个具有线性相关关系的变量时,下面说法:
①相关关系r满足|r|≤1,而且|r|越接近1,变量间的相关程度越大;|r|越接近0,变量间的相关程度越小;
②可以用R2来刻画回归效果,对于已获取的样本数据,R2越小,模型的拟合效果越好;
③如果残差点比较均匀地落在含有x轴的水平的带状区域内,那么选用的模型比较合适;这样带状区域越窄,回归方程的预报精度越高;
④不能期望回归方程得到的预报值就是预报变量的精确值;
⑤随机误差e是衡量预报精确度的一个量,它满足E(e)=0.
其中正确的结论为①③④⑤(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax+3)的定义域为(-∞,1)∪(3,+∞),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的导函数:
(1)y=(1-sinx)2
(2)y=ln$\sqrt{{x}^{2}+1}$;
(3)y=e2x
(4)y=ln3x.

查看答案和解析>>

同步练习册答案