精英家教网 > 高中数学 > 题目详情
已知椭圆左、右焦点分别为F1(-c,0),F2(c,0),点A、B坐标为A(a,0),B(0,b),若△ABC面积为,∠BF2A=120°.
(1)求椭圆的标准方程;
(2)若直线y=kx+2与椭圆交于不同的两点M、N,且以MN为直径的圆恰好过原点,求实数k的取值;
(3)动点P使得成公差小于零的等差数列,记θ为向量的夹角,求θ的取值范围.
【答案】分析:(1)在RT△BOF2中,∠BF2O=60°,计算得:,由,可计算得,从而可求椭圆标准方程.
(2)设直线l的方程为y=kx+2.与椭圆方程联立,根据判别式大于0求得k的范围,设M,N两点坐标分别为M(x1,y1),N(x2,y2).根据韦达定理求得x1+x2和x1x2,进而根据若以MN为直径的圆恰好过原点,x1•x2+y1•y2=0,代入即可求得k,最后检验看是否符合题意.
(3)设P的坐标,由成公差小于零的等差数列得:x2+y2=33≥x2>0
从而,所以可求θ的取值范围..
解答:解:(1)在RT△BOF2中,∠BF2O=60°,计算得:
,计算得,所以椭圆标准方程为
(2)设交点M、N坐标为M(x1,y1),N(x2,y2
将直线y=kx+2代入椭圆整理得方程,3+4k2)x2+16kx+4=0;
由△>0得
由MN为直径的圆过原点得x1•x2+y1•y2=0,所以x1•x2+(kx1+2)(kx2+2)=0,计算并检验得即为所求.
(3)设P(x,y),由成公差小于零的等差数列得:x2+y2=33≥x2>0
所以,所以
点评:本题主要考查椭圆标准方程的求解,考查直线与椭圆的位置关系,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距为2c,若
c
a
=
5
-1
2
(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-3
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点、焦点在x轴上椭圆的离心率e=
3
3
,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),离心率为
1
2
,椭圆上的动点P到直线l:x=
a2
c
的最小距离为2,延长F2P至Q使得|
F2Q
|=2a,线段F1Q上存在异于F1的点T满足
PT
TF1
=0

(1)求椭圆的方程;
(2)求点T的轨迹C的方程;
(3)求证:过直线l:x=
a2
c
上任意一点必可以作两条直线与T的轨迹C相切,并且过两切点的直线经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,左、右焦点分别是F1,F2,过点F1的直线l交C于A,B两点,且△ABF2的周长为4
2
.则椭圆C的方程为
 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省五校协作体高三摸底考试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。

(1)求椭圆C的方程;

(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。

 

查看答案和解析>>

同步练习册答案