精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面节ABCAA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC的中点.
(I)求证:A1O⊥平面ABC;
(Ⅱ)若E为BC1的中点,求证:OE平面A1AB;
(III)求直线A1C与平面A1AB所成角的正弦值.
精英家教网

精英家教网
(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,
所以A1O⊥AC.
又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O?平面AA1C1C,
所以A1O⊥平面ABC;
(Ⅱ)证明:以O为原点,OA,OB,OA1所在直线分别为x,y,z轴建立空间直角坐标系.
由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴OB=
1
2
AC=1,
所以得:O(0,0,0),A(1,0,0),A1(0,0,
3
),C1(-2,0,
3
),E(-1,
1
2
3
2

则有:
AA1
=(-1,0,
3
),
AB
=(-1,1,0),
OE
=(-1,
1
2
3
2

设平面A1AB的法向量为
n
=(x0,y0,z0),则由
n
AA1
=0
n
AB
=0
,可得
-x0+
3
z0=0
-x0+y0=0

故可取
n
=(
3
3
,1)

OE
n
=0

∵OE?平面A1AB
∴OE平面A1AB;
(III)∵C(-1,0,0),∴
A1C
=(-1,0,-
3

∵平面AA1B的一个法向量为
n
=(
3
3
,1)

|cos<
n
A1C
|=|
-
3
+0-
3
7
×2
|=
21
7

∵因为直线A1C与平面A1AB所成角θ和向量
n
A1C
所成锐角互余,
∴sinθ=
21
7
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案