精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(1)求函数f(x)在定义域上的单调区间;
(2)若关于x的方程f(x)-a=0恰有两个不同实数解,求实数a的取值范围;
(3)已知实数x1,x2∈(0,1],且x1+x2=1.若不等式f(x1)•f(x2)≤x+p-lnx在x∈(0,+∞)上恒成立,求实数p的最小值.

解:(1)当x>2时,f(x)=f(2)=是常数,不是单调函数;
当0≤x≤2时,f(x)=,∴
令f′(x)>0,可得0<x<;令f′(x)<0,又0≤x≤2,∴可得<x<2
∴函数f(x)的单调递增区间是:(0,);;单调递减区间是:(,2)
(2)由(1)知,f(0)=1,f(x)max=f()=,f(2)=
方程f(x)-a=0恰有两个不同实数解,等价于直线y=a与曲线y=f(x)恰有两个交点,∴1≤a<
(3)∵实数x1,x2∈(0,1],且x1+x2=1,∴当x1=x2=时,,∴f(x1)+f(x2)=成立
下面先证f(x1)+f(x2)≤
先求0≤x≤2时,函数f(x)=,在x=处的切线方程
∵k=,∴切线方程为,即
下面证明:f(x)=,∴4x3-32x2+29x-7≤0(0<x≤1)成立
令g(x)=4x3-32x2+29x-7(0<x≤1),则g′(x)=12x2-64x+29=(2x-1)(6x-29)(0<x≤1),
∴g(x)在(0,)递增,在(,1)单调递减,∴g(x)max=g()=0
∴f(x)=成立
∴f(x1)•f(x2)≤×=当且仅当当x1=x2=时取等号,
∴[f(x1)•f(x2)]max=
设h(x)=x+p-lnx(x>0),则h′(x)=1-(x>0),
令h′(x)>0,则x<0或x>1,∵x>0,∴x>1;令h′(x)<0,则0<x<1
∴当0<x<1时,函数h(x)单调递减;当x>1时,函数h(x)单调递增
∴h(x)min=h(1)=1+p
∴不等式f(x1)•f(x2)≤x+p-lnx在x∈(0,+∞)上恒成立,等价于≤1+p,
∴p≥
∴实数p的最小值为
分析:(1)当x>2时,f(x)不是单调函数;当0≤x≤2时,求导函数,由导数的正负,考查函数的单调区间;
(2)由(1)知,f(0)=1,f(x)max=f()=,f(2)=,方程f(x)-a=0恰有两个不同实数解,等价于直线y=a与曲线y=f(x)恰有两个交点,由此可得结论;
(3)先证f(x1)+f(x2)≤,确定[f(x1)•f(x2)]max=,再设h(x)=x+p-lnx(x>0),求出函数的最小值∴h(x)min=h(1)=1+p,从而不等式f(x1)•f(x2)≤x+p-lnx在x∈(0,+∞)上恒成立,等价于≤1+p,由此可求实数p的最小值.
点评:本题考查导数知识的运用,考查函数的单调性,考查方程的解,考查恒成立问题,解题的关键是确定函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案