£¨2011•½úÖÐÈýÄ££©Èô¶ÔÈÎÒâµÄx¡ÊA£¬y¡ÊB£¬£¨A⊆R£¬B⊆R£©£¬ÓÐΨһȷ¶¨µÄf£¨x£¬y£©ÓëÖ®¶ÔÓ¦£¬Ôò³Æf£¨x£¬y£©Îª¹ØÓÚx¡¢yµÄ¶þÔªº¯Êý£®ÏÖ¶¨ÒåÂú×ãÏÂÁÐÐÔÖʵĶþÔªº¯Êýf£¨x£¬y£©Îª¹ØÓÚʵÊýx¡¢yµÄ¹ãÒå¡°¾àÀ롱£º
£¨1£©·Ç¸ºÐÔ£ºf£¨x£¬y£©¡Ý0£¬µ±ÇÒ½öµ±x=yʱȡµÈºÅ£»
£¨2£©¶Ô³ÆÐÔ£ºf£¨x£¬y£©=f£¨y£¬x£©£»
£¨3£©Èý½ÇÐβ»µÈʽ£ºf£¨x£¬y£©¡Üf£¨x£¬z£©+f£¨z£¬y£©¶ÔÈÎÒâµÄʵÊýz¾ù³ÉÁ¢£®
½ñ¸ø³öÏÂÁÐËĸö¶þÔªº¯Êý£º¢Ùf£¨x£¬y£©=|x-y|£»  ¢Úf£¨x£¬y£©=£¨x-y£©2£»
¢Ûf(x£¬y)=
x-y
£» ¢Üf£¨x£¬y£©=x2+y2£®
Äܹ»³ÆΪ¹ØÓÚʵÊýx¡¢yµÄ¹ãÒå¡°¾àÀ롱µÄº¯ÊýµÄÐòºÅÊÇ
¢Ù¢Ü
¢Ù¢Ü
£®
·ÖÎö£ºÏÈÀí½âËù¸øµÄ¶¨Ò壬¸ù¾ÝÆäÖеÄÈý¸ö¹æÔò°Ù¸ºÐÔ£¬¶Ô³ÆÐÔ£¬Èý½Ç²»µÈʽ¶ÔËù¸øµÄËĸöº¯Êý½øÐÐÑéÖ¤£¬ÕÒ³ö·ûºÏÌõ¼þµÄº¯Êý£¬ÌîÉÏËüµÄÐòºÅ
½â´ð£º½â£ºÓÉËù¸øµÄ¶¨Òå
¶ÔÓÚ¢Ùf£¨x£¬y£©=|x-y|£¬ÏÔÈ»f£¨x£¬y£©¡Ý0£¬µ±ÇÒ½öµ±x=yʱȡµÈºÅ£¬¹ÊÂú×ã·Ç¸ºÐÔ£¬ÓÖ|x-y|=|y-x|£¬¹Ê¶Ô³ÆÐÔ³ÉÁ¢£¬ÓÖ|x-y|=|x-z+z-y|¡Ü|x-z|+|z-y|£¬¹ÊµÚÈý¸öÐÔÖÊÒ²Âú×㣬¢Ù·ûºÏÌâÒâ
¶ÔÓÚ¢Ú£¬²»·ÁÁîx-y=2£¬ÔòÓÐx-
x+y
2
=
x+y
2
-y=1£¬´ËʱÓУ¨x-y£©2=4£¬¶ø¡¡£¨x-
x+y
2
£©2=£¨
x+y
2
-y£©2=1£¬¹Êf£¨x£¬y£©¡Üf£¨x£¬z£©+f£¨z£¬y£©²»³ÉÁ¢£¬ËùÒÔ²»Âú×ãÈý½Ç²»µÈʽ£¬
¶ÔÓÚ¢Û£¬ÓÉÓÚx-y£¾0ʱ£¬f(y£¬x)=
y-x?
ÎÞÒâÒ壬¹Ê¢Û²»¶Ô£»
¶ÔÓڢܣ¬Èý¸öÐÔÖʶ¼Âú×㣬¹Ê¢Ü·ûºÏÌâÒâ
µãÆÀ£º±¾Ì⿼²é³éÏóº¯Êý¼°ÆäÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÀí½âËù¸øµÄ¶¨Ò壬¸ù¾Ý¶¨ÒåµÄ¹æÔò½øÐÐÅжϣ¬±¾ÌâÊÇÒ»¸ö̽¾¿ÐÍÌ⣬һ¶¨Òª¶Ô¶¨ÒåÀí½â͸³¹£¬Ñϸñ°´¶¨ÒåÖÐËù¸øµÄ¹æÔò½øÐÐÅжϣ¬±¾Ì⿼²éÁËÍÆÀíÅжϵÄÄÜÁ¦¼°·ûºÅ¼ÆËãµÄÄÜÁ¦
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©ÓйØÃüÌâµÄ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©ÒÑ֪ʵÊýx£¬yÂú×ã
x+3y-3¡Ü0
x-y+1¡Ý0  
y¡Ý-1
£¬Ôòz=2x+yµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©Ò»¸öÌå»ýΪ16
3
µÄÕýÈýÀâÖùµÄÈýÊÓͼÈçͼËùʾ£¬ÔòÕâ¸öÈýÀâÖùµÄ×óÊÓͼµÄÃæ»ýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©¶¨ÒåÔÚRÉϵÄżº¯Êýf£¨x£©Âú×ãf£¨x+1£©=
1
f(x)
£¬µ±x¡Ê[-3£¬-2]ʱ£¬f(x)=3x
£¬Éèa=f£¨
3
2
£©£¬b=f£¨
5
£©£¬c=f£¨2
2
£©£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©ÊýÁÐ{xn}Âú×ãxn+1=xn+xn+2£¬ÒÑÖªx1=a£¬x2=b£¬Ôòx2011µÄֵΪ
a
a
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸