精英家教网 > 高中数学 > 题目详情
过双曲线x2-y2=1上一点Q作直线x+y=2的垂线,垂足为N,则线段QN的中点P的轨迹方程为( )
A.2x2-2y2-2x-1=0
B.x2+y2=1
C.2x2+2y2-y=0
D.2x2-2y2-2x+2y-1=0
【答案】分析:设P(x,y),欲求其轨迹方程,即寻找其坐标间的关系,根据垂线的关系及点Q在双曲线上,代入其方程即可得到.
解答:解:设P(x,y),Q(x1,y1),则N(2x-x1,2y-y1),
∵N在直线x+y=2上,
∴2x-x1+2y-y1=2①
又∵PQ垂直于直线x+y=2,∴=1,
即x-y+y1-x1=0.②
由①②得
又∵Q在双曲线x2-y2=1上,
∴x12-y12=1.
∴(x+y-1)2-(x+y-1)2=1.
整理,得2x2-2y2-2x+2y-1=0即为中点P的轨迹方程.
故选D.
点评:本题主要考查了轨迹方程的问题.求曲线的轨迹方程是解析几何的基本问题.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线x2-y2=8的右焦点F2有一条弦PQ,PQ=7,F1是左焦点,那么△F1PQ的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线x2-y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线x2-y2=8的右焦点F2的一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•潍坊三模)已知圆心在x轴正半轴上的圆C过双曲线x2-y2=l的右顶点,且被双曲线的一条渐近线截得的弦长为2
7
,则圆C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若PQ=7,则△F2PQ的周长为(  )

查看答案和解析>>

同步练习册答案