精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(x+
1
2
)=log
1
2
(x2-
9
4
),g(x)=log
1
2
(x-1)-1

(1)求函数f(x)的表达式;(2)若f(x)>g(x),求x的取值范围.
分析:(1)令x+
1
2
=m,则x=m-
1
2
,则f(m)=log
1
2
[(m-
1
2
)2-
9
4
]
.由此能求出函数f(x)的表达式.
(2)由f(x)>g(x),知log
1
2
(x2-x-2)>log
1
2
2(x-1)
.由此能求出x的取值范围.
解答:解:(1)令x+
1
2
=m,则x=m-
1
2

f(m)=log
1
2
[(m-
1
2
)2-
9
4
]

f(m)=log
1
2
(m2-m-2)

即f(x)=log
1
2
(x2-x-2)…(5分)

(2)∵f(x)>g(x),
log
1
2
(x2-x-2)>log
1
2
2(x-1)

x2-x-2>0
x2-x-2<2(x-1).
…(9分)

0<x<3
x>2或x<-1

∴2<x<3…(12分)
点评:本题考查函数表达式的求法和定义域的计算,解题时要认真审题,仔细解答,注意对数函数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州一模)已知函数f(x)满足f(x)=2f(
1
x
)
,当x∈[1,3]时,f(x)=lnx,若在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(1)=
14
,4f(x)f(y)=f(x+y)+f(x-y)
,xy∈R,则f(2013)-f(2012)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=f(π-x),且当x∈(-,)时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则(    )

A.a<b<c               B.b<c<a              

C.c<b<a               D.c<a<b

查看答案和解析>>

科目:高中数学 来源:2014届重庆市高一下期中数学试卷(解析版) 题型:填空题

已知函数f (x)满足:f ( p + q) = f ( p) f (q),f (1) = 3,则+ +++的值为_______________.

 

 

查看答案和解析>>

同步练习册答案