精英家教网 > 高中数学 > 题目详情

已知f(x)=lg(x+1),g(x)=2lg(2x+t)(t∈R,是参数),如果当x∈[0,1]时,f(x)≤g(x)恒成立,则参数t的取值范围是________.

t≥1
分析:f(x)≤g(x)恒成立等价于x∈[0,1]时,有 恒成立,解出t要大于一个函数的最大值即可得到t的范围.
解答:由题意可知x∈[0,1]时,f(x)≤g(x)恒成立等价于x∈[0,1]时,有
恒成立
故x∈[0,1]时,恒成立,于是问题转化为求函数 x∈[0,1]的最大值,令 ,则x=μ2-1,
=上是减函数,
故当μ=1即x=0时,有最大值1,所以t的取值范围是t≥1.
故答案为:t≥1.
点评:考查学生理解函数恒成立时取条件的能力,掌握对数函数定义域的能力,会求二次函数最值的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=lg(1+x)+alg(1-x)是奇函数.
(1)求f(x)的定义域
(2)求a的值;
(3)当k>0时,解关于x的不等式f(x)≥lg
1+xk

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知f(x)=lg(x+1)
(1)若0<f(1-2x)-f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|lg(x-2)|,当a<b时,f(a)=f(b),则a+b的取值范围为
(6,+∞)
(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m取值范围是(  )

查看答案和解析>>

同步练习册答案