精英家教网 > 高中数学 > 题目详情
双曲线的两个焦点为F1、F2,以F1F2为边作等边三角形,若双曲线恰平分三角形的另两边,则双曲线的离心率为( )
A.
B.
C.
D.
【答案】分析:根据双曲线的对称性可推断出三角形的顶点在y轴,根据正三角形的性质求得顶点的坐标,进而求得正三角形的边与双曲线的交点,代入双曲线方程与b2=c2-a2联立整理求得e.
解答:解:双曲线恰好平分正三角形的另两边,
顶点就在Y轴上坐标是(0,c)或(0,-c)
那么正三角形的边与双曲线的交点就是边的中点( c)
在双曲线上代入方程 -=1
联立 b2=c2-a2求得e4-8e2+4=0
求得e=+1 
故答选A.
点评:本题主要考查了双曲线的简单性质,考查了学生对双曲线基础知识的综合把握,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
-1(a>0,b>0)
的两个焦点为F:(-2,0),F:(2,0),点P(3,
7
)

的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学第二轮复习热点专题测试卷:平面解析几何(含详解) 题型:044

已知双曲线的两个焦点为F:(-2,0),F:(2,0),点P(3,)的曲线C上.

(Ⅰ)求双曲线C的方程;

(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点EF,若△OEF的面积为求直线l的方程

查看答案和解析>>

科目:高中数学 来源:2009年高考数学第二轮执点专题测试、平面解析几何(含详解) 题型:044

已知双曲线的两个焦点为F:(-2,0),F:(2,0),点P(3,)的曲线C上.

(Ⅰ)求双曲线C的方程;

(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点EF,若△OEF的面积为求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的两个焦点为F­1,F­2 ,点P在双曲线上,△的面积为,则                              

A.2                       B.                        C.-2                   D.  

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的两个焦点为F­1,F­2 ,点P在双曲线上,的面积为,则                     

A.2                   B.               C.-2               D.-

查看答案和解析>>

同步练习册答案