精英家教网 > 高中数学 > 题目详情
某班在5个男生和4个女生中选四人参加演讲比赛,选中的4人中有男有女,且男生甲和女生乙最少选中1个,则有多少种不同的选法?
考点:计数原理的应用
专题:排列组合
分析:分三大类,第一类,选男生甲也选女生乙,第二类,选男生甲不选女生乙,第三类,不选男生甲选女生乙,类中再继续进行分类,问题得以解决.
解答: 解:第一类,选男生甲也选女生乙,有
C
2
7
=21种,
第二类,选男生甲不选女生乙,1女3男,有C31C42=18种,2女2男,有C32C41=12种,3女1男,有C33=1种,共有18+12+1=31种,
第三类,不选男生甲选女生乙,1女3男,有C43=4种,2女2男,有C31C42=18种,3女1男,有C32C41=12种,共有4+18+12=34种,
根据分类计数原理,共有21+31+34=86种.
点评:本题考查分类计数原理,关键是如何分类,本题是类中有类,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x+2|
+x
,若函数g(x)=f(x)-2|x|-m有四个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一块大理石表示的几何体的三视图如图所示,将该大理石切削、打磨加工成球体,则能得到的最大球体的体积为(  )
A、
3
B、
32π
3
C、36π
D、
256π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是以O为圆心的单位圆上的动点,且|
AB
|=
2
,则
OB
AB
=(  )
A、-1
B、1
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC=BC=
2
,∠ACB=90°,AA1=2
3
,D是A1B1中点.
(1)求证:C1D⊥AB1
(2)若点F是BB1上的动点,求FB1的长度,使AB1⊥面C1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f(a+x)+f(a-x)=2b(其中a,b不同时为0),则称函数y=f(x)为“准奇函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:
①函数f(x)=sinx+1是准奇函数;
②若准奇函数y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)-f(a)不是R上的奇函数;
③已知函数f(x)=x3-3x2+6x-2是准奇函数,则它的“中心点”为(1,2);
④已知函数f(x)=2x-cosx为“准奇函数”,数列{an}是公差为
π
8
的等差数列,若
7
n=1
f(an)=7π(其中
n
i=1
ai表示
n
i=1
ai=a1+a2+…+an),则
[f(a4)]2
a1a7
=
64
7

其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-
2
x
6的展开式的常数项是
 
(应用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥BD,异面直线PA,CD所成角等于60°
(1)求证:面PCD⊥面PBD;
(2)求直线PC和平面PAD所成角的正弦值;
(3)在棱PA上是否存在一点E使得二面角A-BE-D的余弦值为
6
6
?若存在,指出E在棱PA上的位置.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin
6
cos
3
tan
4
的值为(  )
A、-
1
4
B、
1
4
C、
3
4
D、-
3
4

查看答案和解析>>

同步练习册答案