精英家教网 > 高中数学 > 题目详情

已知双曲线E的离心率为e,左、右两焦点分别为F1F2,抛物线CF2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a 2(其中a、c分别为双曲线的实半轴长和半焦距),则e的值为  (  A  )学科网

A.   B. 3    C.   D. 学科网

A


解析:

A  如右图所示,设点P的坐标为(x0,y0),由抛物线以F2为顶点,F1为焦点,可得其准线的方程为x=3c, 根据抛物线的定义可得|PF1|=|PR|=3c-x0,又由点P为双曲线上的点,根据双曲线的第二定义可得学科网

=e, 即得|PF2|=ex0-a, 学科网

由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,学科网

由e>1可得e=, 故应选A.学科网

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线E的离心率为e,左、右两焦点分别为F1、F2,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为(  )
A、
3
B、3
C、
2
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E的离心率为e,左、右两焦点分别为F1F2,抛物线CF2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a 2(其中a、c分别为双曲线的实半轴长和半焦距),则e的值为  (    )学科网

A.               B. 3              C.             D. 学科网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E的离心率为e,左、右两焦点分别为F1F2,抛物线CF2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为             (    )

    A.             B. 3              C.             D.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市英山一中高三摸底数学试卷(解析版) 题型:选择题

已知双曲线E的离心率为e,左、右两焦点分别为F1、F2,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为( )
A.
B.3
C.
D.

查看答案和解析>>

同步练习册答案