精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式
(1)令N(x)=(1+x)2-1+ln(1+x),判断并证明N(x)在(-1,+∞)上的单调性,并求N(0);
(2)求f(x)在定义域上的最小值;
(3)是否存在实数m,n满足0≤m<n,使得f(x)在区间[m,n]上的值域也为[m,n]?
(参考公式:[ln(1+x)′]=数学公式

解:(1)当x>-1时,N(x)=2x+2+>0(2分)
所以,N(x)在(-1,+∞)上是单调递增,N(0)=0(4分)
(2)f(x)的定义域是(-1,+∞)

当-1<x<0时,N(x)<0,所以,f(x)<0,
当x>0时,N(x)>0,所以,f(x)>0,(8分)
所以,在(-1,0)上f(x)单调递减,在(0,+∞)上,f(x)单调递增,
所以,fmin=f(0)=0(10分)
(3)由(2)知f(x)在[0,+∞)上是单调递增函数,
若存在m,n满足条件,则必有f(m)=m,f(n)=n,(11分)
也即方程f(x)=x在[0,+∞)上有两个不等的实根m,n,
但方程f(x)=x,即=0只有一个实根x=0,
所以,不存在满足条件的实数m,n.(14分)
分析:(1)先对函数求导,由导函数在x>-1时的符号判断函数的单调性,代入求N(0)的值,
(2)直接求定义域,利用f(x)单调性求解函数f(x)的最小值、值域,
(3)假设存在符合条件的m,n则有,推导可判断m,n是否存在.
点评:本题考查了利用导数判断函数的单调性及求函数的最值问题,要注意分类讨论思想在解题中的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区二模)记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素.
(1)判断函数f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)设函数f(x)=log2(1-2x),求f(x)的反函数f-1(x),并判断f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素,
例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素,并求f(x)的反函数f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步练习册答案