【题目】已知椭圆
,直线
交椭圆
于
两点,
为坐标原点.
(1)若直线
过椭圆
的右焦点
,求
的面积;
(2)若
,试问椭圆
上是否存在点
,使得四边形
为平行四边形?若存在,求出
的取值范围;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】(1)某中学理学社为了吸收更多新社员,在校团委的支持下,在高一学年组织了抽签赠书活动.月初报名,月末抽签,最初有30名同学参加.社团活动积极分子甲同学参加了活动.
①第一个月有18个中签名额.甲先抽签,乙和丙紧随其后抽签.求这三名同学同时中签的概率.
②理学社设置了第
(
)个月中签的名额为
,并且抽中的同学退出活动,同时补充新同学,补充的同学比中签的同学少2个,如果某次抽签的同学全部中签,则活动立刻结束.求甲同学参加活动时间的期望.
(2)某出版集团为了扩大影响,在全国组织了抽签赠书活动.报名和抽签时间与(1)中某中学理学社的报名和抽签时间相同,最初有30万人参加,甲同学在其中.每个月抽中的人退出活动,同时补充新人,补充的人数与中签的人数相同.出版集团设置了第
(
)个月中签的概率为
,活动进行了
个月,甲同学很幸运,中签了,在此条件下,求证:甲同学参加活动时间的均值小于
个月.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,设直线
过椭圆
的上顶点和右焦点,坐标原点
到直线
的距离为2.
(1)求椭圆
的方程.
(2)过点
且斜率不为零的直线交椭圆
于
,
两点,在
轴的正半轴上是否存在定点
,使得直线
,
的斜率之积为非零的常数?若存在,求出定点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,
年英国来华传教士伟烈亚力将其问题的解法传至欧洲,
年英国数学家马西森指出此法符合
年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将
至
这
个整数中能被
除余
且被
除余
的数按由小到大的顺序排成一列构成一数列,则此数列的项数是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面α∩平面β=l,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D直线l,M,N分别是线段AB,CD的中点.下列判断正确的是( )
![]()
A.若AB
CD,则MN
l
B.若M,N重合,则AC
l
C.若AB与CD相交,且AC
l,则BD可以与l相交
D.若AB与CD是异面直线,则MN不可能与l平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,圆
:
,一动圆在
轴右侧与
轴相切,同时与圆
相外切,此动圆的圆心轨迹为曲线
,椭圆
与曲线
有相同的焦点.
(1)求曲线
的方程;
(2)设曲线
与椭圆
相交于第一象限点
,且
,求椭圆
的标准方程;
(3)在(2)的条件下,如果椭圆
的左顶点为
,过
且垂直于
轴的直线与椭圆
交于
,
两点,直线
,
与直线
:
分别交于
,
两点,证明:四边形
的对角线的交点是椭圆
的右顶点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com