精英家教网 > 高中数学 > 题目详情
3.执行如图所示的程序框图,若输出的S=26,则判断框内为(  )
A.k>3?B.k>4?C.k>5?D.k>6?

分析 模拟执行程序框图,依次写出每次循环得到的s,k的值,由题意当s=26,k=4时,由题意应该不满足条件,退出循环,输出s=26,即可得解.

解答 解:执行程序框图,
第一次循环,s=4,k=2;
第二次循环,s=11,k=3;
第三次循环,s=26,k=4,
结束循环,故判断框内应填“k>3?
故选:A.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(Ⅰ)已知在△ABC中,AB=1,BC=2,∠B=$\frac{π}{3}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$求(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(4$\overrightarrow{a}$+$\overrightarrow{b}$);
(Ⅱ)已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,3),且向量t$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$平行,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,点$A(1,\sqrt{3})$为椭圆$\frac{x^2}{2}+\frac{y^2}{n}=1$上一定点,过点A引两直线与椭圆分别交于B,C两点.
(1)求椭圆方程;
(2)若直线AB,AC与x轴围成以点A为顶点的等腰三角形,求△ABC的面积最大值,并求出此时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知一个半径为$\sqrt{7}$的球中有一个各条棱长都相等的内接正三棱柱,则这正三棱柱的体积是(  )
A.18B.16C.12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知方向向量为$\overrightarrow e=(1,\sqrt{3})$的直线l过点A($0,-2\sqrt{3}$)和椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦点,且椭圆C的中心O和椭圆的右准线上的点B满足:$\overrightarrow{OB}•\overrightarrow e=0$,|$\overrightarrow{AB}$|=|$\overrightarrow{AO}$|.
(1)求椭圆C的方程;
(2)设M、N是椭圆C上两个不同点,且M、N的纵坐标之和为1,记u为M、N的横坐标之积.问是否存在最小的常数m,使u≤m恒成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线y=$\frac{1}{3}$x3
(1)求曲线在点P(2,f(2))处的切线方程; 
(2)求曲线过点P(2,f(x))的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.sin(-1740°)的值是(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}为等差数列,且${a_{2015}}+{a_{2017}}=\int_0^2{\sqrt{4-{x^2}}}dx$,则a2016(a2014+a2018)的最小值为$\frac{{π}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|2x-1<0},B={x|0≤x≤1},那么A∩B等于(  )
A.{x|x≥0}B.{x|x≤1}C.{x|0<x<$\frac{1}{2}$}D.{x|0≤x<$\frac{1}{2}$}

查看答案和解析>>

同步练习册答案