精英家教网 > 高中数学 > 题目详情
正项数列{an}满足
a2n
-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an
(2)令bn=
1
(n+1)an
,求数列{bn}的前n项和Tn
(1)由正项数列{an}满足:
a2n
-(2n-1)an-2n=0,
可得(an-2n)(an+1)=0
所以an=2n.
(2)因为an=2n,bn=
1
(n+1)an

所以bn=
1
(n+1)an

=
1
2n(n+1)

=
1
2
(
1
n
-
1
n+1
)

Tn=
1
2
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)

=
1
2
(1-
1
n+1
)

=
n
2n+2

数列{bn}的前n项和Tn
n
2n+2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列an满足:a1=1,n≥2时,(n-1)an2=nan-12+n2-n.
(1)求数列an的通项公式;
(2)设an=2n•bn,数列bn的前n项和为Sn,是否存在正整数m,使得对任意的n∈N*,m-3<Sn<m恒成立?若存在,求出所有的正整数m;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{
1anlog2bn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•和平区一模)若正项数列{an}满足a1=2,
a
2
n+1
-3an+1an-4
a
2
n
=0,则数列{an}的通项an=
22n-1
22n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)正项数列{an}满足
a
2
n
-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an
(2)令bn=
1
(n+1)an
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足an+12-an2-2an+1-2an=0,a1=1.设bn=n3-3n2+5-an
(1)求数列{an},{bn}的通项公式;
(2)是比较an与bn的大小;
(3)设cn=
1n3-n2+6-bn
,且数列{cn}的前n项和为Sn,求Sn

查看答案和解析>>

同步练习册答案