精英家教网 > 高中数学 > 题目详情
已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{
1anlog2bn
}
的前n项和Tn
分析:(Ⅰ)解方程an2-nan-(n+1)=0,得an,由Sn=2bn-2,得n≥2时,Sn-1=2bn-1-2,两式相减得bn的递推式,根据递推式可判断{bn}为等比数列,进而可求得bn
(Ⅱ)由(Ⅰ)可得
1
anlog2bn
,拆项后利用裂项相消法可求得Tn
解答:解:(Ⅰ)由an2-nan-(n+1)=0,得an=n+1,或an=-1(舍去),
∴an=n+1;
又Sn=2bn-2,∴n≥2时,Sn-1=2bn-1-2,
两式相减,得bn=Sn-Sn-1=2bn-2bn-1
∴bn=2bn-1(n≥2),
∴{bn}为等比数列,公比q=2,
又∵S1=b1=2b1-2,∴b1=2,
bn=2×2n-1=2n
(Ⅱ)由(Ⅰ)知,an=n+1,bn=2n
1
an•log2bn
=
1
(n+1)log22n
=
1
n(n+1)
=
1
n
-
1
n+1

Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
点评:本题考查由递推式求数列通项、等差数列等比数列的通项公式、数列求和等知识,裂相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案