精英家教网 > 高中数学 > 题目详情

【题目】在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.

(1)求此次参加竞赛的学生总数共有多少人?

(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?

(参考数据:若,则

【答案】(1)10000;(2)80

【解析】分析: (1)设出参赛人数的分数,根据分数符合正态分布,根据成绩在90分以上(含90分)的学生有13名,列出大于90分的学生的概率,成绩在90分以上(含90分)的学生人数约占全体参赛人数的0.0013,列出比例式,得到参赛的总人数.

(2)设受奖的学生的分数线为x0.由PXx0)= =0.0228<0.5,可得x0>60.进一步得知P(120-x0<X<x0)=1-2PXx0)=0.9544,即可得x0=60+20=80,故受奖学生的分数线是80.

详解:设学生的得分情况为随机变量XXN(60,100).

μ=60,σ=10.

(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.

P(X>90)= [1-P(30<X≤90)]=0.001 3

∴学生总数为:=10 000(人).

(2)成绩排在前228名的学生数占总数的0.022 8.设分数线为x.

P(Xx0)=0.022 8.

P(120-x0xx0)=1-2×0.022 8=0.954 4.

又知P(60-2×10<x<60+2×10)=0.954 4.

x0=60+2×10=80(分).

点晴:正态分布问题,注意三个关键点:

(1)对称轴 ;②标准差 ;③分布区间。利用对称性求制定区间范围内的概率值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若将函数f(x)=sin(2x+ )的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:

奖级

摸出红、蓝球个数

获奖金额

一等奖

3红1蓝

200元

二等奖

3红0蓝

50元

三等奖

2红1蓝

10元

其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC,P0是边AB上一定点,满足 ,且对于边AB上任一点P,恒有 则(
A.∠ABC=90°
B.∠BAC=90°
C.AB=AC
D.AC=BC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z=kx+y,其中实数x,y满足 ,若z的最大值为12,则实数k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且.

(1)求证:

(2)若为线段的中点,求证:平面

(3)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.

(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|1x6}B{x|2x10}C{x|5axa}

1)求AB,(RAB

2)若CB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】位于潍坊滨海的“滨海之眼”摩天轮是世界上最高的无轴摩天轮,该摩天轮的直径均为124米,中间没有任何支撑,摩天轮顺时针匀速旋转一圈需要30分钟,当乘客乘坐摩天轮到达最高点时,距离地面145米,可以俯瞰白浪河全景,图中与地面垂直,垂足为点,某乘客从处进入处的观景舱,顺时针转动分钟后,第1次到达点,此时点与地面的距离为114米,则( )

A. 16分钟B. 18分钟C. 20分钟D. 22分钟

查看答案和解析>>

同步练习册答案