精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
p2
+
y2
3
=1的左焦点在抛物线C:y2=2px(p>0)的准线上,F为抛物线的焦点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l过点F交抛物线于不同的两点A、B,交y轴于点M,且
MA
=a
AF
MB
=b
BF
,则对任意的直线l,a+b是否为定值?若是,求出a+b的值;否则,请说明理由.
考点:直线与圆锥曲线的关系,抛物线的标准方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)由椭圆
x2
p2
+
y2
3
=1的左焦点为(-
p2-3
,0),抛物线C:y2=2px(p>0)的准线x=-
p
2
,建立方程,可求p的值,从而可得抛物线C的方程;
(Ⅱ)设直线l:y=k(x-1),l与y轴交于M(0,-k),设直线l交抛物线于A(x1,y1),B(x2,y2),与抛物线联立,消元利用韦达定理,结
MA
=a
AF
MB
=b
BF
,可得a,b,由此可得结论.
解答: 解:(Ⅰ)椭圆
x2
p2
+
y2
3
=1的左焦点为(-
p2-3
,0),抛物线C:y2=2px(p>0)的准线x=-
p
2

∴-
p2-3
=-
p
2

∴p=2,
∴抛物线C的方程为y2=4x;
(Ⅱ)由已知得直线l的斜率一定存在,所以设l:y=k(x-1),l与y轴交于M(0,-k),
设直线l交抛物线于A(x1,y1),B(x2,y2),
直线l代入抛物线方程,可得k2x2-(2k2+4)x+k2=0
∴x1+x2=2+
4
k2
,x1x2=1
MA
=a
AF
,∴(x1,y1+k)=(1-x1,-y1),∴a=
x1
1-x1

同理b=
x2
1-x2

∴a+b=
x1
1-x1
+
x2
1-x2
=-1,
∴对任意的直线l,a+b为定值-1.
点评:本题考查抛物线方程,考查直线与抛物线的位置关系,考查向量知识的运用,联立方程,利用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P与定点F(8,0)的距离和它到定直线x=2的距离的比是2,则点P的轨迹方程是(  )
A、
x2
12
-
y2
48
=1
B、
x2
48
-
y2
12
=1
C、
x2
12
+
y2
48
=1
D、
x2
48
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、向量
AB
与向量
BA
的长度不等
B、两个有共同起点长度相等的向量,则终点相同
C、零向量没有方向
D、任一向量与零向量平行

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}满足:lna1+lna3=4,lna4+lna6=10.
(1)求数列{an}的通项公式;
(2)记Sn=lna1+lna2+…+lnan,数列{bn}满足bn=
1
2Sn
,若存在n∈N,使不等式K<(b1+b2+…+bn)(
2
3
n 成立,求实数K的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6
).
(Ⅰ)求f(x)的最小正周期和单调增区间;
(Ⅱ)求f(x)在区间[-
π
6
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为常数,a∈R,函数f(x)=(x-1)lnx,g(x)=-
1
3
x3+
2-a
2
x2+(a-!)x.
(1)求函数f(x)的最值;
(2)若a>0,函数g′(x)为函数g(x)的导函数,g′(x)≤k(a3+a)恒成立,求k的取值范围.
(3)令h(x)=f(x)+g(x),若函数h(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等腰梯形ABCD中,BC∥AD,BO⊥AD于O,且AD=3BC=3BO,现将梯形沿BO折叠,使得△AOB所在平面与四边形OBCD所在平面互相垂直,连接AD、AC,E是AC中点.
(Ⅰ)求证:OE⊥CD;
(Ⅱ)若梯形ABCD的面积是4,求C-BOE的体积VC-BOE
(Ⅲ)求二面角E-OB-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是圆O的直径,C,D是圆上不同两点,且CD∩AB=H,AC=AD,PA⊥圆O所在平面
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=2
2
,∠PBA=
π
4
,∠CAD=
3
,求H到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)=log4x+1,x∈[1,16],F(x)=f (x2)+f 2(x),求F(x)的值域.

查看答案和解析>>

同步练习册答案