精英家教网 > 高中数学 > 题目详情

已知各项都不为零的数列的前n项和为,向量,其中N*,且

(Ⅰ)求数列的通项公式及

(Ⅱ)若数列的前n项和为,且(其中是首项,第四项为的等比数列的公比),求证:

【解析】本试题主要考查了数列的通项公式和前n项和公式的运用。

(1)因为,对n=1, 分别求解通项公式,然后合并。利用,求解

(2)利用

裂项后求和得到结论。

解:(1)  ……1分

时,……2分

)……5分

……7分

……9分

证明:当时,

时,

【答案】

(1)    (2)见解析

 

练习册系列答案
相关习题

科目:高中数学 来源:湖南省师大附中2010届高三第三次月考(理) 题型:解答题

 

设数列的前项和为,如果为常数,则称数列为“科比数列”.

(Ⅰ)已知等差数列的首项为1,公差不为零,若为“科比数列”,求的通项公式;

(Ⅱ)设数列的各项都是正数,前项和为,若对任意 都成立,试推断数列是否为“科比数列”?并说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案