精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD."

(Ⅰ)求证:BC∥平面PAD;
(Ⅱ)若E、F分别为PB,AD的中点,求证:EF⊥BC;
(Ⅲ)求二面角C-PA-D的余弦值.
(Ⅰ)见解析; (Ⅱ) 见解析;(Ⅲ).

试题分析:(Ⅰ)证明BC∥AD,利用线面平行的判定,证明BC∥平面PAD;
(Ⅱ)利用线面垂直的判定证明BC⊥面EFG,即可证明EF⊥BC;
(Ⅲ)设PA的中点为N,连结DN,NC,证明∠CND是所求二面角的平面角,从而可求二面角C-PA-D的余弦值.
试题解析:(Ⅰ)证明:因为ABCD是正方形,所以BC∥AD.
因为AD?平面PAD,BC平面PAD,
所以BC∥平面PAD.…(4分)
(Ⅱ)证明:因为PD⊥底面ABCD,且ABCD是正方形,所以PC⊥BC.
设BC的中点为G,连结EG,FG,则EG∥PC,FG∥DC.
所以BC⊥EG,BC⊥FG.…(6分)
因为EG∩FG=G,所以BC⊥面EFG.
因为EF?面EFG,所以EF⊥BC.…(8分)
(Ⅲ)解:设PA的中点为N,连结DN,NC,

因为PD=AD,N为中点,所以DN⊥PA.
又△PAC中,PC=AC,N为中点,所以NC⊥PA.
所以∠CND是所求二面角的平面角.…(10分)
依条件,有CD⊥PD,CD⊥AD,
因为PD∩AD=D,所以CD⊥面PAD.
因为DN?面PAD,所以CD⊥DN.
在Rt△CND中,DN=,NC=.于是Cos∠CND=.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.

求证:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正四棱锥SABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SOOD,则直线BC与平面PAC所成的角是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则下面说法中,正确的个数是 (    )
(1)线段AB的中点坐标为;(2)线段AB的长度为
(3)到A,B两点的距离相等的点的坐标满足.
A.0个B.1个 C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在底面边长为2,高为1的正四梭柱ABCD=A1B1C1D1中,E,F分别为BC,C1D1的中点.

(1)求异面直线A1E,CF所成的角;
(2)求平面A1EF与平面ADD1A1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面的一个法向量为,平面的一个法向量为
,则k=                                          (  )
A.2B.-4 C.-2 D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量,若,则______;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,当取最小值时,的值为___________.

查看答案和解析>>

同步练习册答案