精英家教网 > 高中数学 > 题目详情
已知数列{an}满足递推关系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t为常数,且t>1)
(1)求a3
(2)求证:{an}满足关系式an+2-2tan+1+tan=0,(n∈N*
(3)求证:an+1>an≥1(n∈N*).
【答案】分析:(1)由a3a1-a22=t(t-1)和a1=1,a2=t,能求出a3
(2)由an+2an-an+12=tn(t-1),(n∈N*)得an+1an-1-an2=tn-1(t-1)(n≥2),所以an+2an-an+12=tan+1an-1-tan2,由此能够证明an+2-2tan+1+tan=0.
(3)由t>1知:an+2an>an+12≥0,所以an+2an>0,故an+2与an同号,由此能够证明an+1>an≥1.
解答:解:(1)由a3a1-a22=t(t-1)和a1=1,a2=t
∴a3=2t2-t…(4分)
(2)由an+2an-an+12=tn(t-1),(n∈N*
得an+1an-1-an2=tn-1(t-1)(n≥2),
再由上两式相除得到:∴an+2an-an+12=tan+1an-1-tan2
∴an(an+2+tan)=an+1(an+1+tan-1

为常数列

而a3+ta1=2t2
即an+2-2tan+1+tan=0.…(9分)
(3)由t>1知:an+2an>an+12≥0
∴an+2an>0
故an+2与an同号
而a1=1>0,a2=t>0.
故an>0.



∴an+1>an
∴an≥1
∴an+1>an≥1.…(14分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意不等式性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案