精英家教网 > 高中数学 > 题目详情

已知数列{an}的各项均为正整数,其前n项和为Sn.若数学公式且S3=29,则a1=________;S3n=________.

5    7n+22
分析:通过对a1分4k,4k+1,4k+2,4k+3(k∈N*)讨论,及与已知条件,结合S3=29,即可求出a1;通过求出a1,a2,…,a9,知道:从a4开始数列{an}是一个周期为3的数列,进而即可得到S3n
解答:(1)①若,则a2=2k,a3=k,∴S3=a1+a2+a3=7k=29,不是整数,舍去;
②若a1=4k+1,则a2=3(4k+1)+1=12k+4,a3=6k+2,∴S3=a1+a2+a3=22k+7=29,解得k=1,∴a1=5.
③若a1=4k+2,则,a3=3a2+1=3(2k+1)+1=6k+4,则S3=a1+a2+a3=12k+7=29,解得k=,应舍去;
④若a1=4k+3,则a2=3(4k+3)+1=12k+10,,则S3=a1+a2+a3=22k+18=29,解得k=不是整数,舍去.
综上可得:a1=5
(2)∵a1=5,a2=16,a3=8,∴a4=4,a5=2,a6=1,a7=4,a8=2,a9=1….
可以看到:从a4开始数列{an}是一个周期为3的数列,即an+3=an,(n≥4).
因此,当n≥2时,S3n=29+7(n-1)=7n+22,当n=1时,上式也成立,故S3n=7n+22.
点评:数列掌握分类讨论的思想方法和数列的周期性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2.已知数列{an}的通项公式是an=
2n
3n+1
(n∈N*,n≤8)
,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中数学 来源:江西省赣县中学2011届高三适应性考试数学理科试题 题型:013

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

例2.已知数列{an}的通项公式是数学公式,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)数学公式(2)数学公式

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.1 数列定义与通项(解析版) 题型:解答题

例2.已知数列{an}的通项公式是,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步练习册答案