《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样的一道题目:把个面包分给个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的份为
A. | B. | C. | D. |
A
解析试题分析:设五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(d>0);则由五个人的面包和为100,得a的值;由较大的三份之和的 ,较小的两份之和,得d的值;从而得最小的1分a-2d的值
五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(其中d>0)
则,(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20;
由(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d);∴24d=11a,∴d=55/6;
所以,最小的1分为a-2d=20-=,选A
考点:等差数列
点评:本题考查了等差数列模型的实际应用,解题时应巧设数列的中间项,从而容易得出结果
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com