精英家教网 > 高中数学 > 题目详情

(本题满分14分)

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视

观众,相关的数据如下表所示:

 

文艺节目

新闻节目

总计

20至40岁

40

18

58

大于40岁

15

27

42

总计

55

45

100

(1)   由表中数据直观分析,收看新闻节目的观众是否与年龄有关?

(2)   用分层抽样方法在收看新闻节目的观众中随机抽出5名,大于40岁的观众应该

抽取几名?

(3)   在上述抽取的5名观众中任取出2名,求恰有1名观众年龄20岁至40岁的概率。

 

【答案】

(1)有关,收看新闻节目多为年龄大的。…..2

   (2)应抽取的人数为:   (人)。……..6

   (3)由上知,抽取的5名观众中,有2名观众年龄处20至 40岁,不妨设为,有3 名观众的年龄大于40岁,不妨设为。从5名观众中抽取2名,所有可能为

则恰有1名观众年龄处20至 40岁取法为6各种。

    所以,所求概率为 。………………………14

【解析】略         

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案