精英家教网 > 高中数学 > 题目详情
(文做)函数f(x)=π x2+2x的增区间是
 
考点:复合函数的单调性
专题:函数的性质及应用
分析:由复合函数的单调性可知,内函数t=x2+2x的增区间即为原函数的增区间.
解答: 解:令t=x2+2x,
则原函数化为y=πt
∵y=πt为增函数,
∴t=x2+2x的增区间即为函数f(x)=π x2+2x的增区间,
而t=x2+2x的增区间为[-1,+∞).
∴函数f(x)=π x2+2x的增区间为[-1,+∞).
故答案为:[-1,+∞).
点评:本题考查了复合函数的单调性,复合函数的单调性满足同增异减的原则,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,A,B,C所对的边分别为a,b,c,ac=3,S△ABC=
3
3
4

(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的可导函数f(x)满足:f′(x)+f(x)<0,θ的终边不落在第一象限的角平分线上,则
f(sinθ+cosθ)
e
2
-sinθ-cosθ
与f(
2
)的大小关系是(  )
A、
f(sinθ+cosθ)
e
2
-sinθ-cosθ
>f(
2
B、
f(sinθ+cosθ)
e
2
-sinθ-cosθ
<f(
2
C、
f(sinθ+cosθ)
e
2
-sinθ-cosθ
=f(
2
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x.
(1)求f(-1)的值;
(2)当x<0时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=ax2+(b+3)x+b是偶函数,其定义域为[a-3,2a],则a=
 
,b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在区间(0,2)上为增函数的是(  )
A、y=2-x
B、y=x2-4x
C、y=x
3
2
D、y=-log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
x-3
2x
≥1},集合B={x|
1
8
<2x<2}.
(1)求A∩B;
(2)若集合C={x|2a≤x≤a+1},且(A∩B)?C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=
2x+1
2x-1
,求:
(1)函数的定义域;
(2)判断函数的奇偶性,并证明;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={0,1,2,3},集合P={x|x2=9},则M∩P=(  )
A、{-3,0,1,2,3}
B、{0,1,2,3}
C、{0,1,2}
D、{3}

查看答案和解析>>

同步练习册答案