精英家教网 > 高中数学 > 题目详情
求函数y=x2-2tx+t2-1在区间[0,1]上的最小值f(t)
分析:先将函数配方,确定函数的对称轴,再利用对称轴与区间的位置关系,进行分类讨论,从而可求函数f(x)=x2-2tx+t2-1在区间[0,1]上的最小值f(t)
解答:解:f(x)=x2-2tx+t2-1=(x-t)2-1,函数的对称轴是x=t,开口向上,
①当t<0时,函数在区间[0,1]上单调增,
∴函数f(x)的最小值为f(t)=f(0)=t2-1;
②当0≤t≤1时,函数在区间[0,t]上单调减,在区间[t,1]上单调增,
∴f(x)的最小值为f(t)=-1;
③当t>1时,函数在区间[0,1]上单调减,
∴f(x)的最小值为f(1)=t2-2t.
综上可知,f(x)的最小值为f(t)=
t2-1,t<0
-1,0≤t≤1
t2-2t,t>1
点评:本题重点考查二次函数在指定区间上的最值问题,解题的关键是正确配方,确定函数的对称轴,利用对称轴与区间的位置关系,进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m、n为正整数,且m≠2,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离为的d1,二次函数y=-x2+(2t-n)x+2nt的图象与x轴的两个交点间的距离为d2,如果d1≥d2对一切实数t恒成立,求m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设m、n为正整数,且m≠2,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离为的d1,二次函数y=-x2+(2t-n)x+2nt的图象与x轴的两个交点间的距离为d2,如果d1≥d2对一切实数t恒成立,求m、n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设m、n为正整数,且m≠2,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离为的d1,二次函数y=-x2+(2t-n)x+2nt的图象与x轴的两个交点间的距离为d2,如果d1≥d2对一切实数t恒成立,求m、n的值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市十四校高三(上)第二次联考数学试卷(理科)(解析版) 题型:解答题

设m、n为正整数,且m≠2,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离为的d1,二次函数y=-x2+(2t-n)x+2nt的图象与x轴的两个交点间的距离为d2,如果d1≥d2对一切实数t恒成立,求m、n的值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市十四校高三(上)第二次联考数学试卷(文科)(解析版) 题型:解答题

设m、n为正整数,且m≠2,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离为的d1,二次函数y=-x2+(2t-n)x+2nt的图象与x轴的两个交点间的距离为d2,如果d1≥d2对一切实数t恒成立,求m、n的值.

查看答案和解析>>

同步练习册答案