精英家教网 > 高中数学 > 题目详情
若向量满足||=||=1,且+=,则向量的夹角为( )
A.90°
B.60°
C.45°
D.30°
【答案】分析:根据所给的a•b+b•b=,代入条件运算,未知的只有夹角的余弦,求出夹角的余弦值,根据角的范围,确定符合题意的角,得到结论.特别要注意向量夹角的范围,这是易错点.
解答:解:∵a•b+b•b=
=
∴cosθ=
∵θ∈[0,π],

故选B
点评:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.?
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2)
b
=(-1,2)
c
=(4,1)
,回答下列三个问题:
(1)试写出将
a
b
c
表示的表达式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值;
(3)若向量
d
满足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2)
b
=(2,1)
(1)求向量(
a
+
b
与向量(
a
-
b
)的夹角θ;
(2)若向量
c
满足:①(
c
+
a
)∥
b
;②(
c
+
b
)⊥
a
,求向量
c

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)已知
a
b
是单位向量,
a
b
=0.若向量
c
满足|
c
-
a
-
b
|=1,则|
c
|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
的夹角为60°,且|
a
|=|
b
|=2
,若向量
c
满足(
a
-
c
)•(
b
-
c
)=0
,则|
c
|
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•枣庄模拟)已知a,b是平面内两个互相垂直的单位向量,若向量
C
满足(a+
c
2
)•(b+
c
2
)=0
,则|
c
|的最大值是(  )

查看答案和解析>>

同步练习册答案