精英家教网 > 高中数学 > 题目详情
已知梯形ABCD中AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点.
(1)当x=2时,求证:BD⊥EG;
(2)当x变化时,求三棱锥D-BCF的体积f(x)的函数式.
分析:(1)利用面面垂直的性质证线面垂直,由线面垂直⇒线线垂直,再由线线垂直证线面垂直,由线面垂直的性质证得线线垂直;
(2)根据题意先求得棱锥的高,再根据体积公式求三棱锥的体积即可.
解答:解:(1)证明:作DH⊥EF,垂足H,连结BH,GH,
∵平面AEFD⊥平面EBCF,交线EF,DH?平面EBCF,
∴DH⊥平面EBCF,又EG?平面EBCF,故EG⊥DH. 
EH=AD=
1
2
BC=BG
,EF∥BC,∠ABC=90°.
∴四边形BGHE为正方形,∴EG⊥BH.               
又BH、DH?平面DBH,且BH∩DH=H,故EG⊥平面DBH.
又BD?平面DBH,∴EG⊥BD.                    
(2)∵AE⊥EF,平面AEFD⊥平面EBCF,交线EF,AE?平面AEFD.
∴AE⊥面EBCF.又由(1)DH⊥平面EBCF,故AE∥GH,
∴四边形AEHD是矩形,DH=AE,故以F、B、C、D为顶点的三
棱锥D-BCF的高DH=AE=x.                      
S△BCF=
1
2
BC•BE=
1
2
×4×( 4-x )=8-2x
.           
∴三棱锥D-BCF的体积f(x)=
1
3
S△BFC•DH
=
1
3
S△BFC•AE
=
1
3
( 8-2x )x=-
2
3
x2+
8
3
x
点评:本题考查线面垂直的性质及棱锥的体积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段
.
AC
所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点,当
2
3
≤λ≤
3
4
时,求双曲线离心率c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段
.
AC
所成的比为
8
11
,双曲线过C、D、E
三点,且以A、B为焦点.求双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是DC、AB的中点,设
AD
=
a
AB
=
b
,试用
a
b
表示
DC
EF
FC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内,过C作l⊥CB,以l为轴将梯形ABCD旋转一周,求所得旋转体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD中,ADBC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内,过C作l⊥CB,以l为轴将梯形ABCD旋转,求旋转体的表面积.?

查看答案和解析>>

同步练习册答案