精英家教网 > 高中数学 > 题目详情
8.在△ABC中,边 a,b,c的对应角分别为A,B,C.若a=1,b=$\sqrt{3},A={30°}$,则B等于(  )
A.60°B.60°或120°C.30°或150°D.120°

分析 直接利用正弦定理求解即可.

解答 解:在△ABC中,边 a,b,c的对应角分别为A,B,C.若a=1,b=$\sqrt{3},A={30°}$,
由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
∴B=60°或120°.
故选:B.

点评 本题考查正弦定理的应用,三角形的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期的图象时,列表并填入的部分数据如下表:
x$\frac{2π}{3}$x1$\frac{8π}{3}$x2x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-20
(Ⅰ)求x1,x2,x3的值及函数f(x)的表达式;
(Ⅱ)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,若直线y=k与函数y=f(x)g(x)的图象在[0,π]上有交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某人射击一次击中目标的概率为0.6,此人射击3次恰有两次击中目标的概率为(  )
A.$\frac{54}{125}$B.$\frac{36}{125}$C.$\frac{27}{125}$D.$\frac{18}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式组$\left\{\begin{array}{l}x≥1\\ y≥0\\ 2x+y≤6\\ x+y≤a\end{array}\right.$表示的平面区域是一个三角形,则实数a的取值范围是(  )
A.{a|1≤a≤3或a>5}B.{a|1<a≤3或a≥5}C.{a|1<a≤5}D.{a|3≤a≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知cos(β-$\frac{π}{4}}$)=$\frac{1}{3}$,则sin2β的值等于$-\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知m、n是不重合的直线,α、β是不重合的平面,则下列命题正确的是(  )
A.若m?α,n∥α,则m∥nB.若m∥α,m∥β,则α∥β
C.若α∩β=n,m∥n,则m∥βD.若m⊥α,m⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设(3x-1)4=a0+a1x+a2x2+a3x3+a4x4.求:
(1)a3
(2)求a0+a1+a2+a3+a4
(3)求a0+a2+a4
(4)求各项二项式系数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinθ=-$\frac{2\sqrt{6}}{5}$,π<θ<$\frac{3π}{2}$.
(Ⅰ)求cosθ,tanθ的值;
(Ⅱ)求[sin($\frac{θ}{2}$+π)+sin($\frac{θ}{2}$+$\frac{π}{2}$)]•[cos($\frac{3π}{2}$-$\frac{θ}{2}$)+cos($\frac{θ}{2}$-5π)]的值.

查看答案和解析>>

同步练习册答案